1、平衡二叉树
主要是看左右高度只差,深度是从root往下看,高度是从最下面往上看,还是看成深度比较好理解,说白了就是左右的深度差不能超过1,求出来最大深度后再比较就好了
递归:
class Solution {
int getDepth(TreeNode* node)
{
if(node == nullptr) return 0;
int leftDepth = getDepth(node->left);
int rightDepth = getDepth(node->right);
if(leftDepth == -1 || rightDepth == -1) return -1;
if(abs(leftDepth-rightDepth)>1) return -1;
return 1+max(leftDepth,rightDepth);
}
public:
bool isBalanced(TreeNode* root) {
int depth = getDepth(root);
if(depth == -1) return false;
return true;
}
};
迭代:被覆盖了...
2、二叉树的所有路径,这个题右坑的,仔细思考什么时候加引用,什么时候不加,不加引用的时候往往有回溯的作用,不加引用每次一个新的递归就会刷新path,但注意在一轮递归调用中,path是增加的,只有重新开始递归才刷新
class Solution {
private:
vector<int> path;
vector<string> result;
public:
void travalSal(TreeNode* node, vector<int>& path, vector<string>& result) {
if (node == nullptr)
return;
path.push_back(node->val);
if(node->left == nullptr && node->right==nullptr)
{
string tmp="";
for(int i = 0;i<path.size()-1;i++)
{
tmp+=to_string(path[i]);
tmp+="->";
}
tmp+=to_string(path[path.size()-1]);
result.push_back(tmp);
return;
}
if(node->left)
{
travalSal(node->left,path,result);
path.pop_back();
}
if(node->right)
{
travalSal(node->right,path,result);
path.pop_back();
}
}
vector<string> binaryTreePaths(TreeNode* root) {
travalSal(root,path,result);
return result;
}
};
class Solution {
private:
string path;
vector<string> result;
public:
void trvalSal(TreeNode* node, string path, vector<string>& result) {
if(node==nullptr) return;
path += to_string(node->val);
if (node->left == nullptr && node->right == nullptr) {
result.push_back(path);
return;
}
path += "->";
if (node->left) {
trvalSal(node->left, path, result);
}
if (node->right) {
trvalSal(node->right, path, result);
}
}
vector<string> binaryTreePaths(TreeNode* root) {
trvalSal(root, path, result);
return result;
}
};
3、左子叶之和
主要考查如何判断满足条件的叶子,一个叶子是左还是右只能由他·的父节点决定,所以判断的维度是父节点:
迭代:
class Solution {
private:
vector<int> result;
public:
int sumOfLeftLeaves(TreeNode* root) {
if(!root) return 0;
stack<TreeNode*> st;
st.push(root);
while(!st.empty())
{
TreeNode* tmp = st.top();
st.pop();
if(tmp->left && !tmp->left->left && !tmp->left->right)
{
result.push_back(tmp->left->val);
}
if(tmp->left) st.push(tmp->left);
if(tmp->right) st.push(tmp->right);
}
return accumulate(result.begin(),result.end(),0);
}
};
递归:
public:
void getLeft(TreeNode* node,vector<int> &leftContainer)
{
if(node == nullptr) return;
if(node->left && !node->left->left && !node->left->right)
{
leftContainer.push_back(node->left->val);
}
if(node->left) getLeft(node->left,leftContainer);
if(node->right) getLeft(node->right,leftContainer);
}
int sumOfLeftLeaves(TreeNode* root) {
getLeft(root,leftContainer);
return accumulate(leftContainer.begin(),
leftContainer.end(),0);
}
};
4、最后一层左下角的值
这个题用层序很简单,只需要保存最后一层的第一个值就好了,用递归反而难,主要是要记录最后一层的最左边的那个值,可以用一个深度值做标记,当第一次到最深的时候的就是我们遍历要的值的时候
递归:
class Solution {
private:
int maxDepth = -1; // 初始化为 -1,因为深度从 0 开始
int result; // 记录结果
public:
void getLeft(TreeNode* node, int depth) {
if (node == nullptr) return;
// 更新结果值和最大深度
if (depth > maxDepth) {
maxDepth = depth;
result = node->val;
}
// 先递归左子树
if (node->left) {
getLeft(node->left, depth + 1);
}
// 再递归右子树
if (node->right) {
getLeft(node->right, depth + 1);
}
}
int findBottomLeftValue(TreeNode* root) {
if (root == nullptr) return -1;
getLeft(root, 0); // 从深度 0 开始
return result;
}
};
层序:
class Solution {
public:
int findBottomLeftValue(TreeNode* root) {
queue<TreeNode*> que;
if (root != NULL) que.push(root);
int result = 0;
while (!que.empty()) {
int size = que.size();
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
if (i == 0) result = node->val;
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
}
return result;
}
};