提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
概述
数据可视化就是将数据转换成图或表等,以一种更直观的方式展现和呈现数据,让读者能“一眼看懂”你想表达的信息。本篇文章将讲述如何通过对tableau的学习与掌握,完成对数据的可视化与仪表盘搭建。
提示:以下是本篇文章正文内容,下面案例可供参考
一、Tableau数据连接
-用tableau进行数据可视化的前提是先将数据连接
-csv数据连接到文本
-xls/xlsx连接到Excel
-json直接连接到json
-数据库连接
默认使用智能连接,只需选择连接所用的数据字段即可
连接所用的字段可以通过函数进行计算和编辑
表格之间的连接原理
以下图csv的连接作为示例(文件连接附在文章结尾):
因为tableau对数据的提取方式是实时的,即每次计算都会连接一次数据库进行取数运算 这是因为Tableau的本质是Vizql查询语言,每做一个操作就查询一次是可以实现的不过在数据量级较大的情况下就会比较慢了。
因此这里我们用连接用数据提取,另外将文件保存为twbx格式,hyper会自动打包进twbx,使tableau自带数据。
二、tableau的基础图形制作
1.tableau数据可视化原理
Tableau可视化原理第一概念:对【度量】和【维度】进行拖拽操作,从而完成可视化图表的制作,是最重要的知识可拖拽操作的区域主要有以下3个行列
行:将字段作为纵轴
列:将字段作为横轴
二者可以通过转置交换
标记卡: 用来切换数据对应的视觉映射类型调整图表颜色、标记、大小等展示细节
筛选器:将指定变量作为筛选条件
这就是Tableau可视化原理的第二个概念:维度会对度量值进行区分,增加度量值的信息密度(单个图表传达信息的多少)
Tableau可视化原理的第二个概念:维度会对度量值进行区分,增加度量值的信息密度(单个图表传达信息的多少)
举个例子,对比气泡图和数轴图
可以看出气泡图没有数轴
可以看出折线图有数轴
Tableau可视化原理的第三个概念:图表分为有轴图表和无轴图表(极坐标图表)
有轴图相信大家都能理解,比如折线图,条形图等等,无轴图可以举个例子,比如饼图:
其度量大小映射成各部分所占360度的度数或者说面积大小。
Tableau可视化原理的第四个概念:离散形成标签,连续形成数轴。图表的数轴上,对于数轴的理解是Tableau在表和图之间切换的关键。
我们常说的度量一般都是连续的,而只有在行或列上的连续性的变量才能形成数轴,是一个有逻辑的连续不可分的参考系
而维度一般都是离散的,离散的变量会形成一个个独立的标签,是一个可以改变顺序彼此独立只是排布到一起的参考系
2.基础图形的制作
折线图
我们将时间以天为单位放到列上,即作为横轴,将gmv作为行放到纵轴上,这样一个简单的折线图就出来了。
柱状图和条形图
这里我们将品牌名称门店名称和平台放到行上,gmv放到列上,即自动生成了柱状图
我们将行列转置一下,便会生成条形图
热力图
热力图的度量映射到颜色,可以通过颜色的深浅来显现,即我们要将所需显现的数据放到颜色上,即这里我们将gmv字段放到颜色上,并改为方形。
这样热力图就生成了。
词云
若想生成词云,可以通过颜色,字体大小表示不同的数据类型和数据值的大小。程度量至大小,维度至颜色和标签 ,图形选为文本。
下图是用平台作为颜色,门店名称为文字,gmv值为大小。
堆积图
绝对堆积:在柱状图/条形图的基础上,用颜色区分一个维度在另一个维度下的占比大小
相对堆积:不展示绝对值,使用合集快表计算:合计百分比,只展示百分比
下图将门店名称设置成列,用两个gmv上下显示分别设置成相对堆积与绝对堆积的行。
饼图
维度为各扇形的颜色,度量为各扇形的度数(面积)。
这里将门店名称设为颜色,gmv设置成大小,再加一个标签显示,并对其标签设置成合计百分比显示,数字形式设置成百分比。
地图
以地理位置为店,用点大小、颜色展示度量值大小等特征。
将地理坐标字段的地理角色改成纬度和经度,将订单距离设为颜色,gmv设为大小,以下显示为地图
基础图形的预测与趋势
这里以时间以天为单位作为列,以gmv作为行,其时间序列gmv的趋势和预测都可以通过“分析”来显示
三.BI仪表盘搭建
1.仪表盘主题拆解
-
要表达清楚你想说的主题应该用什么样的数据?
-这个主题涉及到哪些数据?
- 数据的重要程度是否相同?
- 最适合数据的图表是哪种?
下面讲述以下各个情况下应采取什么基础图形进行数据可视化对比: 绝对值对比——条形图/柱状图 变化: 没有累计关系——折线图+柱状图 有累计关系——面积图/堆积图 构成: 对象少于3个——环形图 对象大于3个——树地图 分布: 单变量分布——直方图 多变量分布——散点图、气泡图
-
以下以这次搭建外卖数据仪表盘为例:
以每日营收情况主题为例
将关键数据列为:营收数据,流量数据其中营收数据构成有:GMV
-商家实收
-用户实付
-总订单数
-有效订单数
-无效订单数
-cpc总费用
-各平台数据对比另外流量数据构成有:
-曝光人数
-进店人数
-下单人数
-进店转化率
-下单转化率
-新客数
-老客数
-复购率数据排序:营收>投放>流量
图表选择:
-经营情况总览:突出显示的文字
-经营数据详情:表格
-每日营收数据:多轴折线图
-每日流量数据:双轴组合图
-新老客占比:环形图
-平台占比:环形图
-门店排名:条形图
-投放情况:散点图
2.开发设计工作表
-
经营情况总览:突出显示的文字
将GMV拖到文本
将商家实收拖拽到GMV的数字上
将行的度量名称拖到列
向度量值框内增加的字段:
曝光人数
进店人数
下单人数
无效订单数
商户补贴
平台补贴
cpc总费用
最后生成如下
-
经营数据详情:表格
复制经营情况总览
拖拽日期到天,选择连续天,选择离散
生成如下
-
每日营收数据:多轴折线图
右键日期,创建自定义日期,选择天
拖拽日期到列、GMV到行
拖拽商家实收、平台补贴到纵轴
生成如下
-
每日流量数据:双轴组合图
拖拽日期(天)到列
创建计算字段
进店率——SUM([进店人数])/SUM([曝光人数])右键进店率字段-默认属性-数字格式
选择百分比复制进店率修改列名为成交率
单人数替换进店人数
进店人数替换曝光人数成交率到行,进店率到纵轴
曝光人数到行
右键曝光人数-双轴
修改曝光人数图层标记为条形图
在行拖拽字段改变图层顺序
-
新老客占比:环形图
创建计算字段
新老客
IF IFnull ([order_90d],0) = 0 then ‘新客’
else ‘老客’
end
(使用ifnull ()函数 关于ifnull函数的表达式为:ifnull (expr1,expr2) 表示如果<表达式1>不为NULL值,则返回原有的值,否则返回<表达式2>)
新老客拖拽到颜色
orders表的计数到大小
选择饼图
整个视图
增加百分比、新老客标签
绝对值拖拽到工具提示
在行输入两个0
双轴修改图层
隐藏纵轴标题
设置格式-线-零值线无
生成如下
-
平台占比:环形图
复制新老客占比
右键平台,进行别名
生成如下
-
门店占比:环形图
复制平台占比
门店名称替换平台即可
生成如下
-
投放情况:散点图
cpc总费用到列
商家实收到行
日期(复制)到详细信息和标签
品牌名称到颜色
添加趋势线
生成如下
-
订单分布:面积图
下单日期到列-连续天
orders计数到行
下单日期时间到颜色-离散小时
标记选为区域
生成如下
-
配送分布:地图
双击配送坐标-经度/纬度
下单日期时间(复制)到详细信息
排除异常数据
右键距离,创建组
shift多选后命名分组
将距离-组拖拽到颜色
生成如下图
3.仪表盘布局与美化
本次采用纵向布局
- 将工作表布局在仪表盘上
- 对各个工作表联动筛选
- 对各个工作表加上边框
- 部分工作表表格简化,比如去除网格线
- 填充
使用空白调整布局 - 字体
标题尽量统一为微软雅黑 - 配色
修改工作表颜色
修改仪表盘底色
最后呈现效果如下
总结
以上就是《数分2:tableau的学习与运用,实操搭建BI仪表盘》,通过学习tableau的基础图形的建立,通过业务目标的理解,搭建BI仪表盘。