1.题目描述:
给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。
2.暴力解法:得到所有子数组的和,取其中最大值,超时。
class Solution {
public int maxSubArray(int[] nums) {
int max = Integer.MIN_VALUE;
for (int i = 0; i < nums.length; i++) {
int temp = 0;
for (int j = i; j < nums.length; j++) {
temp += nums[j];
max = Math.max(max, temp);
}
}
return max;
}
}
3.贪心算法:
一次遍历,count为负数时则count重新记0(带着负数求和比单独后序求和肯定要小),在每段count计数的过程中取最大值,合并为整个数组的最大值。
class Solution {
public int maxSubArray(int[] nums) {
int count = 0;
int max = Integer.MIN_VALUE;
for (int i = 0; i < nums.length; i++) {
count += nums[i];
max = Math.max(max, count);
if (count <= 0) count = 0;
}
return max;
}
}
4.动态规划:
定义dp[i]数组为以索引i位置结尾的最大子数组和,状态转移显而易见,取dp[i-1]与当前元素和及当前元素和的最大值,道理和贪心算法其实一样。
class Solution {
public int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0] = nums[0];
int max = dp[0];
for (int i = 1; i < nums.length; i++) {
dp[i] = Math.max(dp[i - 1] + nums[i], nums[i]);
max = Math.max(max, dp[i]);
}
return max;
}
}
5.分治算法:线段树,待更新。。。