1.题目描述:
给定一个数组prices,其中prices[i]表示股票第i天的价格。在每一天,你可能会决定购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以购买它,然后在同一天出售。返回你能获得的最大利润。每天只能购买或者出售股票一次。
2.贪心算法:
贪心算法不太容易想到,比如1,5,6,9。能发现9 - 1 = 8最大而不是(5 - 1)+(9 - 6)等于7。而(9 - 6)+(6 - 5)+(5 - 1)= 8。不管怎么出售股票,都可以对其中每段的出售拆分为隔天出售的累计,那么最大利润既是所有相邻两天差值为正之和(必对应合理存在的售卖方式)。但是买卖方式与计算方式会存在出入,上述例子中已经体现。
class Solution {
public int maxProfit(int[] prices) {
int max = 0;
for (int i = 0; i < prices.length - 1; i++) {
if (prices[i + 1] > prices[i]) max += prices[i + 1] - prices[i];
//或max += Math.max(prices[i + 1] - prices[i], 0);
}
return max;
}
}
3.动态规划:
写法与leetcode121. 买卖股票的最佳时机几乎一致。
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][2];
//dp[i][0]代表持有股票,dp[i][1]代表不持有股票手里最多的钱
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < prices.length; i++) {
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);//i-1就持有和i买入,多次买卖差异在这里
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][0] + prices[i]);//i-1就没有和i卖出
}
return dp[dp.length - 1][1];
}
}
状态压缩:
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[2][2];
//dp[i][0]代表持有股票,dp[i][1]代表不持有股票手里最多的钱
dp[0][0] = -prices[0];
dp[0][1] = 0;
for (int i = 1; i < prices.length; i++) {
dp[i % 2][0] = Math.max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);//i-1就持有和i买入
dp[i % 2][1] = Math.max(dp[(i - 1) % 2][1], dp[(i - 1) % 2][0] + prices[i]);//i-1就没有和i卖出
}
return dp[(prices.length - 1) % 2][1];
}
}