HDU:4109 Instrction Arrangement (DAG上的最长路/关键路径)

题意:给你一些指令,指令Y要在X发生后Z秒之后才能发生,问执行全部指令最少需要的时间。

思路:关键路径的长度。用动态规划求最早开始事件时间,由于需要从子问题开始求解,因此使用拓扑排序进行排序。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <string>
#include <stack>
#define MAXN 1005
using namespace std;
int g[MAXN][MAXN];
int et[MAXN];
int topo[MAXN];
int main()
{
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        memset(g,0,sizeof(g));
        memset(et,0,sizeof(et));
        memset(topo,0,sizeof(topo));
        int in[MAXN]= {0},In[MAXN]= {0};
        for(int i=0; i<m; ++i)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            if(!g[u][v])
            {
                g[u][v]=w;
                in[v]++;
                In[v]=in[v];
            }

        }
        stack<int> sk;
        for(int i=0; i<n; ++i)
            if(!in[i]) sk.push(i);
        int p=0;
        while(!sk.empty())
        {
            int gettop=sk.top();
            sk.pop();
            topo[p++]=gettop;
            for(int i=0; i<n; ++i)
            {
                if(g[gettop][i])
                {
                    in[i]--;
                    if(!in[i])
                        sk.push(i);
                }
            }
        }
        int mx=0;
        for(int i=0; i<n; ++i)
        {
            int pos=topo[i];
            if(!In[pos])et[pos]=0;
            else
            {
                for(int i=0; i<n; ++i)
                    if(g[i][pos])
                        et[pos]=max(et[i]+g[i][pos],et[pos]);
                mx=max(mx,et[pos]);
            }
        }
        printf("%d\n",mx+1);
    }
    return 0;
}


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值