题意:每次可以改变一个数字,要求使给定的数列变成单调递增或递减,求最小操作数
思路:简单动规。设dp[i][j]表示以第i个数为最后一个数且数值为j时候的最优解,就递增时而言,dp[i][1]可以从dp[i-1][1]转移,dp[i][2]可以从dp[i-1][1]、dp[i-1][2]转移,dp[i][3]可以从dp[i-1][1]、dp[i-1][2]、dp[i-1][3]转移,当然还要考虑是否需要修改当前数字。递减时同理。
可以用滚动数组优化内存。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=30005;
int a[maxn];
int dp[2][4];
int main()
{
int n;
scanf("%d",&n);
for(int i=1; i<=n; ++i)
scanf("%d",&a[i]);
memset(dp,0x7f,sizeof(dp));
dp[0][1]=0;
for(int i=1; i<=n; ++i)
for(int j=1; j<=3; ++j)
{
if(j==1) dp[i&1][1]=dp[(i+1)&1][1]+((a[i]==1)?0:1);
else if(j==2) dp[i&1][2]=min(dp[(i+1)&1][1],dp[(i+1)&1][2])+((a[i]==2)?0:1);
else if(j==3) dp[i&1][3]=min(dp[(i+1)&1][1],min(dp[(i+1)&1][2],dp[(i+1)&1][3]))+((a[i]==3)?0:1);
}
int ans=min(dp[n&1][1],min(dp[n&1][2],dp[n&1][3]));
memset(dp,0x7f,sizeof(dp));
dp[0][3]=0;
for(int i=1; i<=n; ++i)
for(int j=1; j<=3; ++j)
{
if(j==3) dp[i&1][3]=dp[(i+1)&1][3]+((a[i]==3)?0:1);
else if(j==2) dp[i&1][2]=min(dp[(i+1)&1][3],dp[(i+1)&1][2])+((a[i]==2)?0:1);
else if(j==1) dp[i&1][1]=min(dp[(i+1)&1][3],min(dp[(i+1)&1][2],dp[(i+1)&1][1]))+((a[i]==1)?0:1);
}
ans=min(ans,min(dp[n&1][1],min(dp[n&1][2],dp[n&1][3])));
printf("%d\n",ans);
return 0;
}