POJ:3670 Eating Together(动态规划)

题意:每次可以改变一个数字,要求使给定的数列变成单调递增或递减,求最小操作数

思路:简单动规。设dp[i][j]表示以第i个数为最后一个数且数值为j时候的最优解,就递增时而言,dp[i][1]可以从dp[i-1][1]转移,dp[i][2]可以从dp[i-1][1]、dp[i-1][2]转移,dp[i][3]可以从dp[i-1][1]、dp[i-1][2]、dp[i-1][3]转移,当然还要考虑是否需要修改当前数字。递减时同理。

可以用滚动数组优化内存。

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=30005;
int a[maxn];
int dp[2][4];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1; i<=n; ++i)
        scanf("%d",&a[i]);
    memset(dp,0x7f,sizeof(dp));
    dp[0][1]=0;
    for(int i=1; i<=n; ++i)
        for(int j=1; j<=3; ++j)
        {
            if(j==1) dp[i&1][1]=dp[(i+1)&1][1]+((a[i]==1)?0:1);
            else if(j==2) dp[i&1][2]=min(dp[(i+1)&1][1],dp[(i+1)&1][2])+((a[i]==2)?0:1);
            else if(j==3) dp[i&1][3]=min(dp[(i+1)&1][1],min(dp[(i+1)&1][2],dp[(i+1)&1][3]))+((a[i]==3)?0:1);
        }
    int ans=min(dp[n&1][1],min(dp[n&1][2],dp[n&1][3]));
    memset(dp,0x7f,sizeof(dp));
    dp[0][3]=0;
    for(int i=1; i<=n; ++i)
        for(int j=1; j<=3; ++j)
        {
            if(j==3) dp[i&1][3]=dp[(i+1)&1][3]+((a[i]==3)?0:1);
            else if(j==2) dp[i&1][2]=min(dp[(i+1)&1][3],dp[(i+1)&1][2])+((a[i]==2)?0:1);
            else if(j==1) dp[i&1][1]=min(dp[(i+1)&1][3],min(dp[(i+1)&1][2],dp[(i+1)&1][1]))+((a[i]==1)?0:1);
        }
    ans=min(ans,min(dp[n&1][1],min(dp[n&1][2],dp[n&1][3])));
    printf("%d\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值