其实是一个贪心的题目。
每次要相加的是数组里面最小的两个数,得到的结果要存到这个数组里面(原来两个数去掉),以供下次使用。直至将所有数都加过,而每次两数相加之和就是最终所求结果。
为什么每次都是要最小的相加呢?
COST之和最小要求每个COST都要尽量的小,那么组成COST的每部分(原数组中的数或者后来相加所得COST)也要尽量的小。
要求向数组中加入新的数再使数组保持有序,显然要用一种原址排序。
我这里用了插入排序的原理。
在排序算法中,如果输入数组中仅有常数个元素需要在排序过程中存储在数组之外,则称排序算法是原址的。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
int main()
{
// freopen("in.txt","r",stdin);
int n;
while(scanf("%d",&n)==1&&n)
{
int a[50000]={0};
for(int i=0;i<n;++i)
scanf("%d",&a[i]);
sort(a,a+n);
long long sum=0;
for(int i=0;i<n-1;i=i+2)
{
long long x=a[i]+a[i+1];
sum+=x;
a[i]=0;
a[i+1]=0;
for(int j=n-1;j>=i;--j)
{
if(x<a[j])
a[j+1]=a[j];
else if(x>=a[j])
{a[j+1]=x;break;}
}
n++;
}
printf("%lld\n",sum);
}
return 0;
}