中等
给定一个整数数组 nums
,将数组中的元素向右轮转 k
个位置,其中 k
是非负数。
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]
向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]
提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
0 <= k <= 105
进阶:
- 尽可能想出更多的解决方案,至少有 三种 不同的方法可以解决这个问题。
- 你可以使用空间复杂度为
O(1)
的 原地 算法解决这个问题吗?
注意,本题的检测点在于nums
数组,而不是输出的值(cout,printf)需要将结果存放在nums
数组中
题解1: 将nums
数组的最后一位元素移动到第一位,循环k
次即可
使用Temp
数组接收nums的第一位
将nums
数组最后一位弹出
将nums
数组合并到Temp
数组中
交换nums
和Temp
使结果保存到nums
数组中,也方便后续的循环
class Solution {
public:
void rotate(vector<int>& nums, int k) {
vector<int>Temp;
for(int i=0;i<k;i++){
Temp.clear();//清空Temp 使Temp的第一位为nums的最后一位
Temp.push_back(nums[nums.size()-1]);
nums.pop_back();
Temp.insert(Temp.end(),nums.begin(),nums.end());
Temp.swap(nums);
}
}
};
题解2: 观察实例1
可以发现结果就是从[n-k]
位遍历到[n-1]
位,在从[0]
位遍历到[k-1]
位
当然,这只适用于n>=k
的情况,当k>n时只需要k%=n
即可
class Solution {
public:
void rotate(vector<int>& nums, int k) {
int n=nums.size();
if(k==0||n==k||n==1)//当右移次数为0时nums不变 当数组大小=右移次数时nums不变 当数组大小=1时无论右移多少次nums都不变
return;
vector<int>Temp(n);
Temp.swap(nums);//Temp与nums交换 使结果存放在nums中
k%=n;
int j=n-k;
for(int i=0;i<n;i++){
nums[i]=Temp[j];
j=(j+1)%n;
}
}
};