十七等分圆解析

偶尔整理到初中时写的笔记,弃之可惜,于是在此分享。尺规十七等分圆实际上是求解 cos2π17 c o s 2 π 17 的表达式,且此表达式为“ n n ”、“ + ”和“ - ” 的组合。

推理

17α=2π 17 α = 2 π ,则根据12

{sin16α=sinαsin16α=16sinαcos8αcos4αcos2αcosα { s i n 16 α = − s i n α s i n 16 α = 16 s i n α c o s 8 α c o s 4 α c o s 2 α c o s α

16cos8αcos4αcos2αcosα=1 ⟹ 16 c o s 8 α c o s 4 α c o s 2 α c o s α = − 1 ,根据 3

4(cos3α+cosα)(cos12α+cos4α)=1 4 ( c o s 3 α + c o s α ) ( c o s 12 α + c o s 4 α ) = − 1


{x=cosα+cos2α+cos4α+cos8αy=cos3α+cos5α+cos6α+cos7α { x = c o s α + c o s 2 α + c o s 4 α + c o s 8 α y = c o s 3 α + c o s 5 α + c o s 6 α + c o s 7 α

则原式可以展开表示为 x+y=12 x + y = − 1 2
同时易得 xy=1 x y = − 1
{xy=1x+y=12{x,y}={1+174,1174} { x y = − 1 x + y = − 1 2 ⟹ { x , y } = { − 1 + 17 4 , − 1 − 17 4 }

同理,设
{x1=cosα+cos4αx2=cos2α+cos8α,{y1=cos3α+cos5αy2=cos6α+cos7α { x 1 = c o s α + c o s 4 α x 2 = c o s 2 α + c o s 8 α , { y 1 = c o s 3 α + c o s 5 α y 2 = c o s 6 α + c o s 7 α


{x1+x2=1+174x1x2=14x1=171+342178 { x 1 + x 2 = − 1 + 17 4 x 1 x 2 = − 1 4 ⟹ x 1 = 17 − 1 + 34 − 2 17 8

{y1+y2=1174y1y2=14y1=171+34+2178 { y 1 + y 2 = − 1 − 17 4 y 1 y 2 = − 1 4 ⟹ y 1 = − 17 − 1 + 34 + 2 17 8

cos3α+cos5α=2cosαcos4α ∵ c o s 3 α + c o s 5 α = 2 c o s α c o s 4 α
{cosαcos4α=y1cosα+cos4α=x1 ∴ { c o s α c o s 4 α = y 1 c o s α + c o s 4 α = x 1

cosα=116(171+34217+(6+217)(21734217)) ⟹ c o s α = 1 16 ( 17 − 1 + 34 − 2 17 + ( 6 + 2 17 ) ( 2 17 − 34 − 2 17 ) )


  1. sin(2πα)=sinα s i n ( 2 π − α ) = − s i n α
  2. sin2α=2sinαcosα s i n 2 α = 2 s i n α c o s α
  3. 2cosαcosβ=cos(α+β)+cos(αβ) 2 c o s α c o s β = c o s ( α + β ) + c o s ( α − β )
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值