序
偶尔整理到初中时写的笔记,弃之可惜,于是在此分享。尺规十七等分圆实际上是求解 cos2π17 c o s 2 π 17 的表达式,且此表达式为“ n−−√ n ”、“ + ”和“ - ” 的组合。
推理
{sin16α=−sinαsin16α=16sinαcos8αcos4αcos2αcosα
{
s
i
n
16
α
=
−
s
i
n
α
s
i
n
16
α
=
16
s
i
n
α
c
o
s
8
α
c
o
s
4
α
c
o
s
2
α
c
o
s
α
⟹16cos8αcos4αcos2αcosα=−1 ⟹ 16 c o s 8 α c o s 4 α c o s 2 α c o s α = − 1 ,根据 3得
4(cos3α+cosα)(cos12α+cos4α)=−1
4
(
c
o
s
3
α
+
c
o
s
α
)
(
c
o
s
12
α
+
c
o
s
4
α
)
=
−
1
设
{x=cosα+cos2α+cos4α+cos8αy=cos3α+cos5α+cos6α+cos7α
{
x
=
c
o
s
α
+
c
o
s
2
α
+
c
o
s
4
α
+
c
o
s
8
α
y
=
c
o
s
3
α
+
c
o
s
5
α
+
c
o
s
6
α
+
c
o
s
7
α
则原式可以展开表示为 x+y=−12 x + y = − 1 2
同时易得 xy=−1 x y = − 1
{xy=−1x+y=−12⟹{x,y}={−1+17−−√4,−1−17−−√4}
{
x
y
=
−
1
x
+
y
=
−
1
2
⟹
{
x
,
y
}
=
{
−
1
+
17
4
,
−
1
−
17
4
}
同理,设
{x1=cosα+cos4αx2=cos2α+cos8α,{y1=cos3α+cos5αy2=cos6α+cos7α
{
x
1
=
c
o
s
α
+
c
o
s
4
α
x
2
=
c
o
s
2
α
+
c
o
s
8
α
,
{
y
1
=
c
o
s
3
α
+
c
o
s
5
α
y
2
=
c
o
s
6
α
+
c
o
s
7
α
则
{x1+x2=−1+17√4x1x2=−14⟹x1=17−−√−1+34−217−−√−−−−−−−−−√8
{
x
1
+
x
2
=
−
1
+
17
4
x
1
x
2
=
−
1
4
⟹
x
1
=
17
−
1
+
34
−
2
17
8
{y1+y2=−1−17√4y1y2=−14⟹y1=−17−−√−1+34+217−−√−−−−−−−−−√8
{
y
1
+
y
2
=
−
1
−
17
4
y
1
y
2
=
−
1
4
⟹
y
1
=
−
17
−
1
+
34
+
2
17
8
又 ∵cos3α+cos5α=2cosαcos4α ∵ c o s 3 α + c o s 5 α = 2 c o s α c o s 4 α
∴{cosαcos4α=y1cosα+cos4α=x1
∴
{
c
o
s
α
c
o
s
4
α
=
y
1
c
o
s
α
+
c
o
s
4
α
=
x
1
⟹cosα=116(17−−√−1+34−217−−√−−−−−−−−−√+(6+217−−√)(217−−√−34−217−−√−−−−−−−−−√)−−−−−−−−−−−−−−−−−−−−−−−−−−−√) ⟹ c o s α = 1 16 ( 17 − 1 + 34 − 2 17 + ( 6 + 2 17 ) ( 2 17 − 34 − 2 17 ) )