《数值计算方法》第二版习题2第15题

《数值计算方法》第二版习题2第 15 15 15

题目:

设函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上至少三阶连续可微, p ∈ ( a , b ) p\in(a,b) p(a,b) f ( x ) f(x) f(x)的一个 m m m重零点,求一个 λ \lambda λ值使改进的 N e w t o n Newton Newton下山法
x k + 1 = x k − λ f ( x k ) f ′ ( x k ) x_{k+1}=x_{k}-\lambda\frac{f(x_k)}{f'(x_k)} xk+1=xkλf(xk)f(xk)
至少是二阶收敛的。

求解:

首先,对于一个迭代过程 x k + 1 = φ ( x k ) x_{k+1}=\varphi{(x_{k})} xk+1=φ(xk),如果 φ ( p ) ( x ) \varphi^{(p)}(x) φ(p)(x)在所求根 x ∗ x^* x的附近连续,并且
φ ′ ( x ∗ ) = φ ′ ′ ( x ∗ ) = ⋯ = φ ( p − 1 ) ( x ∗ ) = 0 , φ ( p ) ( x ∗ ) ≠ 0 \varphi'(x^*)=\varphi''(x^*)=\cdots=\varphi^{(p-1)}(x^*)=0,\quad{\varphi^{{(p)}}(x^*)\ne0} φ(x)=φ(x)==φ(p1)(x)=0,φ(p)(x)=0
则该迭代过程在点 x ∗ x^* x附近是 p p p阶收敛的。

此定理的证明可由 φ ( x ) \varphi(x) φ(x)在根 x ∗ x^* x附近做 T a y l o r Taylor Taylor展开来证明,此处不详述。

因此,要证明一个迭代过程至少是二阶收敛的,我们只需证明 φ ( x ) \varphi{(x)} φ(x)在其根 x ∗ x^* x处的一阶导数为 0 0 0即可。

对于此题,我们首先将迭代过程标准化,即表示为 x k + 1 = φ ( x ) x_{k+1}=\varphi(x) xk+1=φ(x)的形式。因此我们得到:
φ ( x ) = x − λ f ( x ) f ′ ( x ) (1) \varphi(x)=x-\lambda\frac{f(x)}{f'(x)}\tag{1} φ(x)=xλf(x)f(x)(1)
p p p f ( x ) = 0 f(x)=0 f(x)=0 ( a , b ) (a,b) (a,b)的一个根,因此若要证明改进的 N e w t o n Newton Newton下山法至少是二阶收敛的,只需要证明 φ ′ ( p ) = 0 \varphi'(p)=0 φ(p)=0即可。

p p p f ( x ) f(x) f(x) m m m重零点,因此我们可设 f ( x ) = ( x − p ) m g ( x ) f(x)=(x-p)^{m}g(x) f(x)=(xp)mg(x),其中 g ( x ) g(x) g(x)满足 g ( p ) ≠ 0 g(p)\ne0 g(p)=0

φ ( x ) \varphi(x) φ(x)求一阶导有:
φ ′ ( x ) = 1 − λ ( [ f ′ ( x ) ] 2 − f ( x ) f ′ ′ ( x ) [ f ′ ( x ) ] 2 ) = 1 − λ + λ f ( x ) f ′ ′ ( x ) [ f ′ ( x ) ] 2 (2) \begin{aligned} \varphi'(x)&=1-\lambda(\frac{[f'(x)]^2-f(x)f''(x)}{[f'(x)]^2})\\ &=1-\lambda+\lambda\frac{f(x)f''(x)}{[f'(x)]^2} \end{aligned} \tag{2} φ(x)=1λ([f(x)]2[f(x)]2f(x)f(x))=1λ+λ[f(x)]2f(x)f(x)(2)
由于 f ( j ) ( p ) = 0 f^{(j)}(p)=0 f(j)(p)=0,其中 j ∈ [ 0 , m − 1 ] j\in[0,m-1] j[0,m1]。因此, φ ′ ( p ) \varphi'(p) φ(p)中最后一项分子分母均为 0 0 0,故必须表示为如下极限形式:
φ ′ ( p ) = 1 − λ + λ lim ⁡ x → p f ( x ) f ′ ′ ( x ) [ f ′ ( x ) ] 2 (3) \varphi'(p)=1-\lambda+\lambda\lim_{x\to{p}}\frac{f(x)f''(x)}{[f'(x)]^2}\tag{3} φ(p)=1λ+λxplim[f(x)]2f(x)f(x)(3)
f ( x ) f(x) f(x)分别求一阶和二阶导有:
f ′ ( x ) = m ( x − p ) m − 1 g ( x ) + ( x − p ) m g ′ ( x ) = ( x − p ) m − 1 [ m g ( x ) + ( x − p ) g ′ ( x ) ] f ′ ′ ( x ) = m [ ( m − 1 ) ( x − p ) m − 2 g ( x ) + ( x − p ) m − 1 g ′ ( x ) ] + m ( x − p ) m − 1 g ′ ( x ) + ( x − p ) m g ′ ′ ( x ) = m ( m − 1 ) ( x − p ) m − 2 g ( x ) + 2 m ( x − p ) m − 1 g ′ ( x ) + ( x − p ) m g ′ ′ ( x ) = ( x − p ) m − 2 [ m ( m − 1 ) g ( x ) + 2 m ( x − p ) g ′ ( x ) + ( x − p ) 2 g ′ ′ ( x ) ] (4) \begin{aligned} f'(x)&=m(x-p)^{m-1}g(x)+(x-p)^{m}g'(x)\\ &=(x-p)^{m-1}[mg(x)+(x-p)g'(x)]\\ \end{aligned}\tag{4}\\ \begin{aligned} f''(x)&=m[(m-1)(x-p)^{m-2}g(x)+(x-p)^{m-1}g'(x)]+m(x-p)^{m-1}g'(x)+(x-p)^{m}g''(x)\\ &=m(m-1)(x-p)^{m-2}g(x)+2m(x-p)^{m-1}g'(x)+(x-p)^{m}g''(x)\\ &=(x-p)^{m-2}[m(m-1)g(x)+2m(x-p)g'(x)+(x-p)^2g''(x)] \end{aligned} f(x)=m(xp)m1g(x)+(xp)mg(x)=(xp)m1[mg(x)+(xp)g(x)]f(x)=m[(m1)(xp)m2g(x)+(xp)m1g(x)]+m(xp)m1g(x)+(xp)mg(x)=m(m1)(xp)m2g(x)+2m(xp)m1g(x)+(xp)mg(x)=(xp)m2[m(m1)g(x)+2m(xp)g(x)+(xp)2g(x)](4)
将式(4)代入式(3),并将分子分母约分和代入,有:
φ ′ ( p ) = 1 − λ + λ lim ⁡ x → p g ( x ) [ m ( m − 1 ) g ( x ) + 2 m ( x − p ) g ′ ( x ) + ( x − p ) 2 g ′ ′ ( x ) ] [ m g ( x ) + ( x − p ) g ′ ( x ) ] 2 = 1 − λ + λ lim ⁡ x → p m ( m − 1 ) g 2 ( x ) m 2 g 2 ( x ) = 1 − λ + λ m − 1 m = 1 − λ m (5) \begin{aligned} \varphi'(p)&=1-\lambda+\lambda\lim_{x\to{p}}\frac{g(x)[m(m-1)g(x)+2m(x-p)g'(x)+(x-p)^2g''(x)]}{[mg(x)+(x-p)g'(x)]^2}\\ &=1-\lambda+\lambda\lim_{x\to{p}}\frac{m(m-1)g^2(x)}{{m^2}{g^2(x)}}\\ &=1-\lambda+\lambda\frac{m-1}{m}\\ &=1-\frac{\lambda}{m} \end{aligned} \tag{5} φ(p)=1λ+λxplim[mg(x)+(xp)g(x)]2g(x)[m(m1)g(x)+2m(xp)g(x)+(xp)2g(x)]=1λ+λxplimm2g2(x)m(m1)g2(x)=1λ+λmm1=1mλ(5)
我们令 φ ′ ( p ) = 0 \varphi'(p)=0 φ(p)=0,即可得到 λ = m \lambda=m λ=m

因此,当取 λ = m \lambda=m λ=m时,改进的 N e w t o n Newton Newton下山法至少是二阶收敛的。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值