Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
Sample Output
1 0 2 998
Hint
Hint
Huge input, scanf is recommended.
Huge input, scanf is recommended.
题解:
最基础的并查集。
#include <cstdlib>
#include <iostream>
#include <cstdio>
using namespace std;
int root[100010];
int look(int a)
{
if(root[a]!=a)
root[a]=look(root[a]);
return root[a];
}
void uni(int a,int b)
{
a=look(a);
b=look(b);
root[a]=b;
}
int main(int argc, char *argv[])
{
int m,n;
while(scanf("%d",&m)!=EOF&&m!=0)
{
int i,a,b,ans=0;
scanf("%d",&n);
for(i=0; i<=m; i++)
root[i]=i;
for(i=1; i<=n; i++)
{
scanf("%d%d",&a,&b);
if(root[a]!=root[b]) uni(a,b);
}
for(i=1; i<=m; i++)
if(root[i]==i) ++ans;
printf("%d\n",ans-1) ;
}
return 0;
}