刷题的时候看到这样一个题:打印输出1-9的所有全排序列。后来想了一会,算是理会了,好记性不如烂笔头赶紧写一写加深一点理解。
看到这个问题,我们比较直观的想法就是每交换一次就做一次打印输出,但是要求控制好不能出现重复的序列。接下来以1-4的情况来作分析。
如上图,把第一位的交换(第1位与第1,2,3,4位的交换)分别编号为1,2,3,4. 类似的第2位的交换(第2位与第2,3,4位的交换)分别编号为5,6,7,。同理第3位的交换(第3位的与第3,4位的交换),第4位与自己的交换记为10 。
我们知道对于1-n个数的所有全排数为n! 我们可以这样考虑:
第1位我们做4次交换,对于第1位的每一种情况,后面3位再做全排,同样的第2位的每一种情况后两位也做一次全排,这样到了最后一位就打印输出。
当第一位取1时,我们知道这种全排种类数为 3!= 6 。当第一位和后面3位分别交换变成2,3,4后分别有6种情况,而后面除最后一位外的交换情况又是类似的,因此可以考虑利用递归的方法实现。
递归实现的步骤如下:
1)做第一位编号为1的交换(即1和自己交换),完了到下一位去做编号为5的交换