文章目录
0 前言
🔥这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。
为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是
🚩 毕业设计 深度学习照片上色与动态化
🥇学长这里给一个题目综合评分(每项满分5分)
难度系数:3分
工作量:3分
创新点:4分
🧿 项目分享:见文末!
1 项目运行效果
视频效果:
毕业设计 深度学习照片上色与动态化
2 课题背景
随着科技的发展,现在已经没有朋友会再去买胶卷拍照片了。不过对于很多70、80后来说,他们家中还保存着大量之前拍摄的胶卷和老照片。这些老照片是一个时代的记忆,记录着我们生活中的点点滴滴。不过时代发展了,这些老照片的保存和浏览也应该与时俱进。在本期文章中,我们就介绍如何将这些老照片转化为数字照片,更方便大家在电脑或者手机上浏览、保存和回忆。
本项目中我们利用生成对抗网络-GAN和图像动作驱动-First Order Motion Model来给老照片上色并使它动起来。
3 GAN(生成对抗网络)
3.1 简介
**GANs(Generative adversarial networks,对抗式生成网络)**可以把这三个单词拆分理解。
- Generative:生成式模型
- Adversarial:采取对抗的策略
- Networks:网络(不一定是深度学习)
模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。
3.2 基本原理
这里介绍的是原生的GAN算法,虽然有一些不足,但提供了一种生成对抗性的新思路。放心,我这篇博文不会堆一大堆公式,只会提供一种理解思路。
理解GAN的两大护法G和D,生成对抗网络(GAN)由2个重要的部分构成:
- 生成器(Generator):通过机器生成数据(大部分情况下是图像),负责凭空捏造数据出来,目的是“骗过”判别器
- 判别器(Discriminator):判断这张图像是真实的还是机器生成的,负责判断数据是不是真数据,目的是找出生成器做的“假数据”
这样可以简单的看作是两个网络的博弈过程。在最原始的GAN论文里面,G和D都是两个多层感知机网络。首先,注意一点,GAN操作的数据不一定非得是图像数据,不过为了更方便解释,用图像数据为例解释以下GAN:
tensorflow实现
import tensorflow as tf
def load_dataset(mnist_size, mnist_batch_size, cifar_size, cifar_batch_size,):
""" load mnist and cifar10 dataset to shuffle.
Args:
mnist_size: mnist dataset size.
mnist_batch_size: every train dataset of mnist.
cifar_size: cifar10 dataset size.
cifar_batch_size: every train dataset of cifar10.
Returns:
mnist dataset, cifar10 dataset
"""
# load mnist data
(mnist_train_images, mnist_train_labels), (_, _)