排序:
默认
按更新时间
按访问量

合并数据

1、concat合并数据 import numpy as np import pandas as pd df1 = pd.DataFrame(np.ones((3,4))*1, columns=['A','B','C','D']) df2 = pd.DataFrame(np.on...

2018-01-16 23:44:03

阅读数:36

评论数:0

python设置值及NaN值处理

python 设置值 import pandas as pd import numpy as np dates = pd.date_range('20180101',periods=6) df = pd.DataFrame(np.arange(24).reshape(6,4),index=d...

2018-01-14 23:54:13

阅读数:3328

评论数:0

Pandas创建及基本操作

Pandas创建及基本操作 一、Series类型由一组数据及与之相关的数据索引组成。创建的几种方式: import pandas as pd import numpy as np a = pd.Series([1,3,4,np.nan,45]) #1、列表生成 print(a) ...

2018-01-12 00:23:53

阅读数:149

评论数:0

pandas数据选择(索引)

import pandas as pd import numpy as np dates = pd.date_range('20180101',periods=6) df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,column...

2018-01-11 23:38:10

阅读数:574

评论数:0

pandas

一、Series类型 Series类型由一组数据及与之相关的数据索引组成。创建: 1、列表 a = pd.Series([5,4,3],index=['a','b','c']) 2、字典 b = pd.Series({'a':5,'b':4,'c':3}, index=['c',...

2017-11-29 16:59:09

阅读数:55

评论数:0

爬取当当网图书信息

大体思路: 列表页数据条数完整,但单条数据信息不完整,所以先爬取列表页单条数据的url; 再从这个url中提取每条数据的详细信息。import requests import re from bs4 import BeautifulSoup import pandas as pdn=0 nam...

2017-11-23 19:23:25

阅读数:266

评论数:0

数学题

寻找质数: for num in range(10,500): for i in range(2,num): if num%i == 0: j = num/i print ('%d = %d x %d' % (num,i,j)...

2017-11-14 19:52:20

阅读数:118

评论数:0

matplotlib函数

matplotlib函数import matplotlib.pyplot as plt plt.plot(x, y, fortmat_string, **kwargs) 参数说明: ·x,y是数值列表 ·fortmat_string:颜色字符、风格字符、标记字符(可选) ·kwargs:(统一修改...

2017-10-31 19:54:52

阅读数:97

评论数:0

Numpy数组

1、列表和数组:列表数据类型可以不同;数组的数据类型相同 2、N维数组对象:ndarray Python已有列表类型,为什么需要一个数组对象(类型)? • 数组对象可以去掉元素间运算所需的循环,使一维向量更像单个数据 • 设置专门的数组对象,经过优化,可以提升这类应用的运算速度 • 数...

2017-10-29 23:47:36

阅读数:155

评论数:0

CD数据分析

import pandas as pd import numpy as np import matplotlib.pyplot as plt%matplotlib inline plt.style.use('ggplot')columns = ['UID','order_dt','product'...

2017-10-27 15:45:06

阅读数:101

评论数:0

爬取当当网图书图片

import requests from bs4 import BeautifulSoup import redef getHTMLText(url): try: r = requests.get(url) r.encoding = r.apparent_e...

2017-10-26 00:05:35

阅读数:183

评论数:0

merge, datime64

merge函数使用: http://pandas.pydata.org/pandas-docs/stable/merging.htmltimestamp解释:瘳雪峰Datetimes and Timedeltas: https://docs.scipy.org/doc/numpy/refere...

2017-10-20 18:57:25

阅读数:119

评论数:0

数据分析

import pandas as pd import numpy as np import matplotlib.pyplot as plt%matplotlib inline plt.style.use('ggplot')columns = ['UID','order_dt','product'...

2017-10-16 16:34:03

阅读数:120

评论数:0

datetime

一、pandas库中的to_datetime函数:pandas.to_datetime: pandas.to_datetime(arg, errors=’raise’, dayfirst=False, yearfirst=False, utc=None, box=True, format=Non...

2017-10-15 12:33:22

阅读数:101

评论数:0

爬取天气数据+热力图

第一次用旧知识爬取天气网站数据。import requests from bs4 import BeautifulSoup import bs4def getHTMLText(url): try: r = requests.get(url) r.raise_...

2017-10-11 18:49:53

阅读数:827

评论数:0

正则表达式

常用操作符: 正则表达式表达类型:原生字符串类型(不包含转义符的字符串,即\;可在字符串前加r,如:r’text’re 库函数: re库的另一种用法:编译后多次操作 pattern = re.compile(r’[1-9]\d{5}’) rst = pattern.search...

2017-10-07 21:42:24

阅读数:84

评论数:0

大学排名信息爬取

import requests from bs4 import BeautifulSoup import bs4def getHTMLText(url): try: r = requests.get(url) r.raise_for_status() ...

2017-09-30 16:28:54

阅读数:158

评论数:0

format函数

format 函数可以接受不限个参数,位置可以不按顺序>>>"{} {}".format("hello", "world") # 不设置指定位置,按默认顺序 'hello world'>>> &q...

2017-09-30 16:27:35

阅读数:971

评论数:0

BeautifulSoup0929

补充: 创建Beautiful Soup对象: soup = BeautifulSoup(html, ‘html.parser’) 一、Beautiful Soup类基本元素(5): 例、<p class="title"&...

2017-09-29 10:40:19

阅读数:102

评论数:0

Requests20170928

HTTP协议: URL格式:http://host:port[path] host:合法的Internet主机域名或IP地址 path:请求资源的路径URL是通过HTTP协议存取资源的Internet路径。requests库的主要方法: 1、r = requests.request():构...

2017-09-28 22:54:41

阅读数:77

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭