php函数serialize()与unserialize()

serialize()和unserialize()在php手册上的解释是:

serialize — Generates a storable representation of a value

serialize — 产生一个可存储的值的表示

unserialize — Creates a PHP value from a stored representation

unserialize — 从已存储的表示中创建 PHP 的值

<?php
//声明一个类
class   dog  {

     var   $name ;
     var   $age ;
     var   $owner ;

     function   dog ( $in_name = "unnamed" , $in_age = "0" , $in_owner = "unknown" ) {
         $this -> name   =   $in_name ;
         $this -> age   =   $in_age ;
         $this -> owner   =   $in_owner ;
    }

     function   getage () {
         return  ( $this -> age   *   365 );
    }
    
     function   getowner () {
         return  ( $this -> owner );
    }
    
     function   getname () {
         return  ( $this -> name );
    }
}
//实例化这个类
$ourfirstdog   =   new  dog( "Rover" , 12 , "Lisa and Graham" );
//用serialize函数将这个实例转化为一个序列化的字符串
$dogdisc   =   serialize ( $ourfirstdog );
print   $dogdisc //$ourfirstdog 已经序列化为字符串 O:3:"dog":3:{s:4:"name";s:5:"Rover";s:3:"age";i:12;s:5:"owner";s:15:"Lisa and Graham";}

print   '<BR>' ;

/* 
-----------------------------------------------------------------------------------------
    在这里你可以将字符串 $dogdisc 存储到任何地方如 session,cookie,数据库,php文件 
-----------------------------------------------------------------------------------------
*/

//我们在此注销这个类
unset ( $ourfirstdog );

/*    还原操作   */

/* 
-----------------------------------------------------------------------------------------
    在这里将字符串 $dogdisc 从你存储的地方读出来如 session,cookie,数据库,php文件 
-----------------------------------------------------------------------------------------
*/


//我们在这里用 unserialize() 还原已经序列化的对象
$pet   =   unserialize ( $dogdisc );  //此时的 $pet 已经是前面的 $ourfirstdog 对象了
//获得年龄和名字属性
$old   =   $pet -> getage ();
$name   =   $pet -> getname ();
//这个类此时无需实例化可以继续使用,而且属性和值都是保持在序列化之前的状态
print   "Our first dog is called  $name  and is  $old  days old<br>" ;
print   '<BR>' ;
?>
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值