Kaggle_Titanic生存预测 -- 详细流程吐血梳理

本文详细介绍了Kaggle泰坦尼克生存预测的比赛流程,包括数据总览、缺失值处理、特征分析、变量转换、特征工程、模型融合测试等步骤。通过对性别、船舱等级、年龄等因素的深入分析,展示了如何从原始数据中提取关键特征,以提高预测准确性。同时,文中探讨了模型融合策略,如Bagging、Boosting、Stacking,以提高预测模型的性能。
摘要由CSDN通过智能技术生成

作者大树先生
博客http://blog.csdn.net/koala_tree
知乎https://www.zhihu.com/people/dashuxiansheng
GitHubhttps://github.com/MrLeeTree
2017 年 12 月 5 日


一直想在Kaggle上参加一次比赛,奈何被各种事情所拖累。为了熟悉一下比赛的流程和对数据建模有个较为直观的认识,断断续续用一段时间做了Kaggle上的入门比赛:Titanic: Machine Learning from Disaster

总的来说收获还算是挺大的吧。本来想的是只简单的做一下,在整个进行的过程中发现有很多好的Kernels以及数据分析的流程和方法,但是却鲜有比较清晰直观的流程和较为全面的分析方法。所以,本着自己强迫症的精神,同时也算对这次小比赛的一些方式方法以及绘图分析技巧做一个较为系统的笔记,经过几天快要吐血的整理下,本文新鲜出炉。

本文参考了若干kernels以及博客知文,文章下方均有引用说明。


同时我在知乎上开设了关于机器学习深度学习的专栏收录下面的内容,以方便大家在移动端的学习。欢迎关注我的知乎:大树先生。一起学习一起进步呀!_


1. 数据总览

Titanic 生存模型预测,其中包含了两组数据:train.csvtest.csv,分别为训练集合和测试集合。

import re
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

%matplotlib inline

观察前几行的源数据:

train_data = pd.read_csv('data/train.csv')
test_data = pd.read_csv('data/test.csv')

sns.set_style('whitegrid')
train_data.head()
PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 113803 53.1000 C123 S
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 373450 8.0500 NaN S

数据信息总览:

train_data.info()
print("-" * 40)
test_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
----------------------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
PassengerId    418 non-null int64
Pclass         418 non-null int64
Name           418 non-null object
Sex            418 non-null object
Age            332 non-null float64
SibSp          418 non-null int64
Parch          418 non-null int64
Ticket         418 non-null object
Fare           417 non-null float64
Cabin          91 non-null object
Embarked       418 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB

从上面我们可以看出,Age、Cabin、Embarked、Fare几个特征存在缺失值。

绘制存活的比例:

train_data['Survived'].value_counts().plot.pie(autopct = '%1.2f%%')
<matplotlib.axes._subplots.AxesSubplot at 0x230c2508ef0>

这里写图片描述

2. 缺失值处理的方法

对数据进行分析的时候要注意其中是否有缺失值。

一些机器学习算法能够处理缺失值,比如神经网络,一些则不能。对于缺失值,一般有以下几种处理方法:

(1)如果数据集很多,但有很少的缺失值,可以删掉带缺失值的行;

(2)如果该属性相对学习来说不是很重要,可以对缺失值赋均值或者众数。比如在哪儿上船Embarked这一属性(共有三个上船地点),缺失俩值,可以用众数赋值

train_data.Embarked[train_data.Embarked.isnull()] = train_data.Embarked.dropna().mode().values

(3)对于标称属性,可以赋一个代表缺失的值,比如‘U0’。因为缺失本身也可能代表着一些隐含信息。比如船舱号Cabin这一属性,缺失可能代表并没有船舱。

#replace missing value with U0
train_data['Cabin'] = train_data.Cabin.fillna('U0') # train_data.Cabin[train_data.Cabin.isnull()]='U0'

(4)使用回归 随机森林等模型来预测缺失属性的值。因为Age在该数据集里是一个相当重要的特征(先对Age进行分析即可得知),所以保证一定的缺失值填充准确率是非常重要的,对结果也会产生较大影响。一般情况下,会使用数据完整的条目作为模型的训练集,以此来预测缺失值。对于当前的这个数据,可以使用随机森林来预测也可以使用线性回归预测。这里使用随机森林预测模型,选取数据集中的数值属性作为特征(因为sklearn的模型只能处理数值属性,所以这里先仅选取数值特征,但在实际的应用中需要将非数值特征转换为数值特征)

from sklearn.ensemble import RandomForestRegressor

#choose training data to predict age
age_df = train_data[['Age','Survived','Fare', 'Parch', 'SibSp', 'Pclass']]
age_df_notnull = age_df.loc[(train_data['Age'].notnull())]
age_df_isnull = age_df.loc[(train_data['Age'].isnull())]
X = age_df_notnull.values[:,1:]
Y = age_df_notnull.values[:,0]
# use RandomForestRegression to train data
RFR = RandomForestRegressor(n_estimators=1000, n_jobs=-1)
RFR.fit(X,Y)
predictAges = RFR.predict(age_df_isnull.values[:,1:])
train_data.loc[train_data['Age'].isnull(), ['Age']]= predictAges

让我们再来看一下缺失数据处理后的DataFram:

train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            891 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          891 non-null object
Embarked       891 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB   

3. 分析数据关系

(1) 性别与是否生存的关系 Sex

train_data.groupby(['Sex','Survived'])['Survived'].count()
Sex     Survived
female  0            81
        1           233
male    0           468
        1           109
Name: Survived, dtype: int64
train_data[['Sex','Survived']].groupby(['Sex']).mean().plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x230c251ab00>

这里写图片描述

以上为不同性别的生存率,可见在泰坦尼克号事故中,还是体现了Lady First。

(2) 船舱等级和生存与否的关系 Pclass

train_data.groupby(['Pclass','Survived'])['Pclass'].count()
Pclass  Survived
1       0            80
        1           136
2       0            97
        1            87
3       0           372
        1           119
Name: Pclass, dtype: int64
train_data[['Pclass','Survived']].groupby(['Pclass']).mean().plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x230c5e08b70>

这里写图片描述

train_data[['Sex','Pclass','Survived']].groupby(['Pclass','Sex']).mean().plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x230c5e2ad68>

这里写图片描述

不同等级船舱的男女生存率:

train_data.groupby(['Sex', 'Pclass', 'Survived'])['Survived'].count()
Sex     Pclass  Survived
female  1       0             3
                1            91
        2       0             6
                1            70
        3       0            72
                1            72
male    1       0            77
                1            45
        2       0            91
                1            17
        3       0           300
                1            47
Name: Survived, dtype: int64

从图和表中可以看出,总体上泰坦尼克号逃生是妇女优先,但是对于不同等级的船舱还是有一定的区别。

(3) 年龄与存活与否的关系 Age

分别分析不同等级船舱和不同性别下的年龄分布和生存的关系:

fig, ax = plt.subplots(1, 2, figsize = (18, 8))
sns.violinplot("Pclass", "Age", hue="Survived", data=train_data, split=True, ax=ax[0])
ax[0].set_title('Pclass and Age vs Survived')
ax[0].set_yticks(range(0, 110, 10))

sns.violinplot("Sex", "Age", hue="Survived", data=train_data, split=True, ax=ax[1])
ax[1].set_title('Sex and Age vs Survived')
ax[1].set_yticks(range(0, 110, 10))

plt.show()

这里写图片描述

分析总体的年龄分布:

plt.figure(figsize=(12,5))
plt.subplot(121)
train_data['Age'].hist(bins=70)
plt.xlabel('Age')
plt.ylabel('Num')

plt.subplot(122)
train_data.boxplot(column='Age', showfliers=False)
plt.show()

这里写图片描述

不同年龄下的生存和非生存的分布情况:

facet = sns.FacetGrid(train_data, hue="Survived",aspect=4)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, train_data['Age'].max()))
facet.add_legend()
<seaborn.axisgrid.FacetGrid at 0x230c5e53cf8>

png

不同年龄下的平均生存率:

# average survived passengers by age
fig, axis1 = plt.subplots(1,1,figsize=(18,4))
train_data["Age_int"] = train_data["Age"].astype(int)
average_age = train_data[["Age_int", "Survived"]].groupby(['Age_int'],as_index=False).mean()
sns.barplot(x='Age_int', y='Survived', data=average_age)
<matplotlib.axes._subplots.AxesSubplot at 0x230c60135f8>

这里写图片描述

train_data['Age'].describe()
count    891.000000
mean      29.668231
std       13.739002
min        0.420000
25%       21.000000
50%       28.000000
75%       37.000000
max       80.000000
Name: Age, dtype: float64

样本有891,平均年龄约为30岁,标准差13.5岁,最小年龄为0.42,最大年龄80.

按照年龄,将乘客划分为儿童、少年、成年和老年,分析四个群体的生还情况:

bins = [0, 12, 18, 65, 100]
train_data['Age_group'] = pd.cut(train_data['Age'], bins)
by_age = train_data.groupby('Age_group')['Survived'].mean()
by_age
Age_group
(0, 12]      0.506173
(12, 18]     0.466667
(18, 65]     0.364512
(65, 100]    0.125000
Name: Survived, dtype: float64
by_age.plot(kind = 'bar')
<matplotlib.axes._subplots.AxesSubplot at 0x230c6079e80>

这里写图片描述

(4) 称呼与存活与否的关系 Name

通过观察名字数据,我们可以看出其中包括对乘客的称呼,如:Mr、Miss、Mrs等,称呼信息包含了乘客的年龄、性别,同时也包含了如社会地位等的称呼,如:Dr,、Lady、Major、Master等的称呼。

train_data['Title'] = train_data['Name'].str.extract(' ([A-Za-z]+)\.', expand=False)

pd.crosstab(train_data['Title'], train_data['Sex'])
Sex female male
Title
Capt 0 1
Col 0 2
Countess 1 0
Don 0 1
Dr 1 6
Jonkheer 0 1
Lady 1 0
Major 0 2
Master 0 40
Miss 182 0
Mlle 2 0
Mme 1 0
Mr 0 517
Mrs 125 0
Ms 1 0
Rev 0 6
Sir 0 1

观察不同称呼与生存率的关系:

train_data[['Title','Survived']].groupby(['Title']).mean().plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x230c61699b0>

这里写图片描述

同时,对于名字,我们还可以观察名字长度和生存率之间存在关系的可能:

fig, axis1 = plt.subplots(1,1,figsize=(18,4))
train_data['Name_length'] = train_data['Name'].apply(len)
name_length = train_data[['Name_length','Survived']].groupby(['Name_length'],as_index=False).mean()
sns.barplot(x='Name_length', y='Survived', data=name_length)
<matplotlib.axes._subplots.AxesSubplot at 0x230c61689b0>

这里写图片描述

从上面的图片可以看出,名字长度和生存与否确实也存在一定的相关性。

(5) 有无兄弟姐妹和存活与否的关系 SibSp

# 将数据分为有兄弟姐妹的和没有兄弟姐妹的两组:
sibsp_df = train_data[train_data['SibSp'] != 0]
no_sibsp_df = train_data[train_data['SibSp'] == 0]
plt.figure(figsize=(10,5))
plt.subplot(121)
sibsp_df['Survived'].value_counts().plot.pie(labels=['No Survived', 'Survived'], autopct = '%1.1f%%')
plt.xlabel('sibsp')

plt.subplot(122)
no_sibsp_df['Survived'].value_counts().plot.pie(labels=['No Survived', 'Survived'], autopct = '%1.1f%%')
plt.xlabel('no_sibsp')

plt.show()

这里写图片描述

(6) 有无父母子女和存活与否的关系 Parch

和有无兄弟姐妹一样,同样分析可以得到:

parch_df = train_data[train_data['Parch'] != 0]
no_parch_df = train_data[train_data['Parch'] == 0]

plt.figure(figsize=(10,5))
plt.subplot(121)
parch_df['Survived'].value_counts().plot.pie(labels=['No Survived', 'Survived'], autopct = '%1.1f%%')
plt.xlabel('parch'
根据引用的分析,在进行Kaggle Titanic生存预测时,可以将乘客的年龄、性别和船票等级作为重点数据进行分析。乘客的家属数量可能对生存率有影响,但需要与其他信息一起探讨,例如乘客是否是船上所有家属中最年轻的一个。船票编号、价格和客舱号可以视为一类信息,与船票等级可能有关联。而最后一个登船港口对生存率的影响暂时被假设为无关,因为仅凭几百条数据很难确定其影响。 引用和可以看到,登船地点对生存率有一定的影响。在S港口登船的人数最多,C港口次之,Q港口最少。在S港口登船的乘客生存率较低,而在C港口登船的乘客生存率较高。另外,在不同登船港口的女性乘客占比也不同,C港口的女性乘客数量最多,Q港口次之,S港口最少。由于前面已经了解到女性的生存率明显高于男性,因此性别因素可能是导致生存率差异的原因之一。 综上所述,在Kaggle Titanic生存预测中,可以将乘客的年龄、性别、船票等级和登船地点作为重要的特征进行分析。其中,女性的生存率较高,C港口登船的乘客生存率较高,而S港口登船的乘客生存率较低。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [kaggle|泰坦尼克号生存预测](https://blog.csdn.net/weixin_45435206/article/details/104422277)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【机器学习kaggle赛事】泰坦尼克号生存预测](https://blog.csdn.net/m0_51933492/article/details/126895547)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 60
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值