MRP
在系统中实现 MRP(物料需求计划) 的逻辑,需要基于 数据库 和 算法 进行自动计算,确保物料按时到达,以满足生产需求。以下是 MRP 的核心逻辑和实现步骤:
📌 MRP 系统实现流程
- 数据输入:从 ERP 或其他系统获取需求数据
- 需求计算:展开 BOM(物料清单),计算净需求
- 时间规划:根据提前期(Lead Time)计算下单时间
- 生成采购/生产计划:创建采购单或生产工单
📌 1. 关键数据表设计
在数据库中,需要以下几张核心表:
表名 | 作用 |
---|---|
sales_orders | 存储客户订单数据(销售需求) |
inventory | 存储当前库存数据 |
purchase_orders | 存储已下的采购订单(预计到货数据) |
bom | 存储物料清单(BOM 结构) |
lead_time | 存储物料的采购或生产周期 |
mrp_results | 计算出的 MRP 计划数据 |
📌 2. MRP 计算核心逻辑
实现 MRP 计算时,需要进行以下关键步骤:
(1) 计算净需求
根据客户订单、库存和已下采购订单,计算 净需求(Net Requirement):
[
\text{净需求} = \text{总需求} - \text{现有库存} - \text{预计到货}
]
SQL 示例:
SELECT
s.material_id,
SUM(s.quantity) AS total_demand,
COALESCE(i.stock, 0) AS current_stock,
COALESCE(p.on_order, 0) AS expected_receipts,
(SUM(s.quantity) - COALESCE(i.stock, 0) - COALESCE(p.on_order, 0)) AS net_requirement
FROM sales_orders s
LEFT JOIN inventory i ON s.material_id = i.material_id
LEFT JOIN purchase_orders p ON s.material_id = p.material_id
GROUP BY s.material_id;
(2) 展开 BOM 计算子项需求
如果一个 成品 A 需要 B(2 个) 和 C(3 个):
- 需求 100 个 A,则:
- 需要 B = 100 × 2 = 200
- 需要 C = 100 × 3 = 300
SQL 示例(递归展开 BOM):
WITH RECURSIVE BomTree AS (
SELECT material_id, component_id, quantity
FROM bom WHERE material_id = 'A'
UNION ALL
SELECT b.material_id, b.component_id, b.quantity * t.quantity
FROM BomTree t
JOIN bom b ON t.component_id = b.material_id
)
SELECT * FROM BomTree;
(3) 计算下单时间
物料需要提前下单,提前期计算如下:
[
\text{计划下单日期} = \text{需求日期} - \text{提前期(Lead Time)}
]
SQL 示例:
SELECT
m.material_id,
m.net_requirement,
l.lead_time,
DATE_SUB('2024-03-10', INTERVAL l.lead_time DAY) AS order_date
FROM mrp_results m
JOIN lead_time l ON m.material_id = l.material_id;
(4) 生成采购/生产订单
生成采购订单:
INSERT INTO purchase_orders (material_id, quantity, order_date, expected_arrival)
SELECT material_id, net_requirement, CURDATE(), DATE_ADD(CURDATE(), INTERVAL lead_time DAY)
FROM mrp_results;
生成生产工单:
INSERT INTO production_orders (product_id, quantity, start_date, due_date)
SELECT material_id, net_requirement, CURDATE(), DATE_ADD(CURDATE(), INTERVAL lead_time DAY)
FROM mrp_results WHERE is_manufactured = 1;
📌 3. MRP 计算流程示例
假设:
- 客户订单:A(100个)
- BOM 结构:
- A(1个)需要 B(2个)、C(3个)
- B(1个)需要 D(2个)
- 库存:
- A:20
- B:30
- C:10
- D:50
- 采购交期(Lead Time):
- B:5天
- C:7天
- D:3天
计算结果:
物料 | 总需求 | 现有库存 | 预计到货 | 净需求 | 计划下单时间 |
---|---|---|---|---|---|
A | 100 | 20 | 0 | 80 | - |
B | 160 | 30 | 0 | 130 | 订货时间 = 生产A时间 - 5天 |
C | 240 | 10 | 0 | 230 | 订货时间 = 生产A时间 - 7天 |
D | 260 | 50 | 0 | 210 | 订货时间 = 生产B时间 - 3天 |
最终,系统会:
- 生成 B、C、D 的采购订单
- 生成 A 和 B 的生产订单
- 计算下单时间,避免物料短缺
📌 4. 系统优化
- 自动化 MRP 运行:
- 定期(每天/每周)运行 MRP 计算
- 结合 APS(高级计划排程),优化生产排程
- 动态安全库存调整:
- 根据历史数据预测波动,自动调整安全库存
- 异常处理机制:
- 供应商延迟、订单变更时,自动调整 MRP 计划
✅ 结论
在系统中实现 MRP,需要:
- 构建数据库(销售订单、库存、BOM、Lead Time)
- 计算净需求(销售需求 - 库存 - 预计到货)
- 展开 BOM 结构,计算所有子物料需求
- 根据 Lead Time 计算下单时间
- 自动生成采购和生产订单
- 优化 MRP 计划,提高供应链效率
如果你要在 ERP、WMS 或 APS 系统中实现 MRP,可以使用 SQL+Python/Java 进行开发。你需要在某个系统里实现这个功能吗?😃
库存周转率
库存周转率(Inventory Turnover Ratio) 是衡量库存管理效率的重要指标,表示库存在特定时间内被消耗和补充的次数。它反映了企业的库存周转速度,用于评估库存管理的健康状况。
📌 1. 库存周转率计算公式
基本公式
[
\text{库存周转率} = \frac{\text{销售成本(COGS)}}{\text{平均库存}}
]
- 销售成本(COGS,Cost of Goods Sold):一段时间内销售商品的成本。
- 平均库存:通常计算为:
[
\text{平均库存} = \frac{\text{期初库存} + \text{期末库存}}{2}
]
📌 2. 库存周转天数
库存周转率通常与**库存周转天数(Days Sales of Inventory, DSI)**一起使用:
[
\text{库存周转天数} = \frac{365}{\text{库存周转率}}
]
- 代表库存平均多少天可以卖完一次,数值越小,库存管理越高效。
📌 3. 示例计算
假设某企业:
- 年销售成本(COGS) = 5,000,000 元
- 期初库存 = 1,000,000 元
- 期末库存 = 1,500,000 元
📌 计算库存周转率:
[
\text{平均库存} = \frac{1,000,000 + 1,500,000}{2} = 1,250,000
]
[
\text{库存周转率} = \frac{5,000,000}{1,250,000} = 4
]
说明该企业的库存在一年内周转 4 次。
📌 计算库存周转天数:
[
\text{库存周转天数} = \frac{365}{4} \approx 91.25 \text{ 天}
]
即平均 91 天 才能把库存卖完一次。
📌 4. 如何优化库存周转率
- 降低库存水平:减少呆滞库存,提高库存利用率。
- 优化采购计划:结合 MRP、APS 预测需求,避免过量采购。
- 提升销售速度:加快销售渠道,提高订单执行效率。
- 优化供应链:缩短供应商交货周期,减少库存依赖。
库存周转率过高可能意味着库存不足,影响订单交付;过低可能导致库存积压、资金占用。
你的企业想优化库存管理,还是需要计算具体数据?😃
优化库存周转率、降低库存成本 需要结合数据分析、优化策略 和 系统工具(如 MRP、APS、WMS 等) 来进行全面管理。以下是详细的 数据需求 和 优化方法。
📌 1. 需要哪些数据?
要优化库存周转率并降低库存成本,至少需要以下 关键数据:
数据类别 | 数据项 | 作用 |
---|---|---|
库存数据 | 期初库存、期末库存、库存结构(原料、成品、呆滞品) | 计算库存周转率,分析库存占比 |
销售数据 | 订单量、销售金额、销售趋势 | 预测需求,避免过量备货 |
采购数据 | 采购订单、交货时间(Lead Time)、供应商表现 | 优化采购计划,缩短补货周期 |
生产数据 | 生产计划、在制品(WIP)、生产周期 | 平衡生产与库存,减少积压 |
需求预测 | 历史销量、季节性波动、市场趋势 | 精准预测,避免多余库存 |
库存成本 | 仓储成本、资金占用成本、呆滞品损失 | 计算库存成本,优化存货结构 |
📌 2. 如何优化库存周转率,降低库存成本?
优化库存的核心目标是 提高库存周转速度,同时确保供应链稳定。以下是 可执行的优化策略:
📌 (1) 精准需求预测
方法:
- 使用 销售数据 + 机器学习模型 预测未来需求
- 考虑 季节性波动、促销活动、市场趋势
📌 示例 SQL 查询(基于近 6 个月销量计算移动平均预测):
SELECT material_id, AVG(quantity) AS forecast_demand
FROM sales_orders
WHERE order_date >= DATE_SUB(CURDATE(), INTERVAL 6 MONTH)
GROUP BY material_id;
📌 工具:
- ERP / BI 分析:基于历史数据预测需求
- AI/ML 模型(如 ARIMA、LSTM)优化预测
📌 (2) 改进采购和补货策略
📌 核心思路:
- 调整安全库存:减少不必要的库存积压
- 优化采购批量:降低采购成本,同时避免超量采购
- 缩短供应链周期:提高供应商交付稳定性
📌 优化补货公式(ROP - 订货点):
[
\text{订货点} = \left(\text{平均每日需求} \times \text{交货周期} \right) + \text{安全库存}
]
📌 SQL 查询示例(计算某物料的订货点):
SELECT material_id,
AVG(daily_demand) * lead_time + safety_stock AS reorder_point
FROM (
SELECT material_id, SUM(quantity)/30 AS daily_demand
FROM sales_orders
WHERE order_date >= DATE_SUB(CURDATE(), INTERVAL 1 MONTH)
GROUP BY material_id
) AS demand_data
JOIN inventory ON demand_data.material_id = inventory.material_id;
📌 工具:
- MRP(物料需求计划) 自动计算采购需求
- APS(高级计划排程) 优化供应链节奏
📌 (3) 采用 JIT(Just-In-Time)策略
核心思想:
- 减少库存持有,让原料和成品只在需要时到达
- 提高供应链协同,与供应商保持实时沟通
📌 执行方式:
- 采用 VMI(供应商管理库存),让供应商直接补货
- 结合 WMS(仓库管理系统) 实现实时库存监控
📌 (4) 处理呆滞库存
核心问题:
- 呆滞库存 = 低周转物料,占用现金流
- 如果不优化,每年库存持有成本可能高达 25-30%
📌 方法:
- 数据分析:找出 90天以上无流转库存,优先清理
- 促销/折扣:清理低周转商品,回笼资金
- 替代利用:将部分呆滞库存调整到其他产品线
📌 SQL 查询(找出 90 天未动库存):
SELECT material_id, stock_quantity
FROM inventory
WHERE material_id NOT IN (
SELECT DISTINCT material_id FROM sales_orders WHERE order_date >= DATE_SUB(CURDATE(), INTERVAL 90 DAY)
);
📌 工具:
- BI 报表(如 Power BI/Tableau) 分析呆滞库存
- 自动清理规则:WMS 设定 90 天无销量物料自动降价
📌 (5) 结合 APS 调整生产节奏
如果库存周转率低,可能是生产节奏不匹配市场需求。
- 结合 APS(高级排程) 优化生产计划
- 采用 TOC(约束理论) 识别瓶颈资源,调整生产负荷
📌 方法:
- 减少提前生产,以订单驱动生产
- 按需补货,减少过量 WIP(在制品)库存
- 优化换产批次,减少切换损耗,提高生产效率
📌 3. 总结:优化库存周转率的实施步骤
步骤 | 优化方式 | 目标 |
---|---|---|
1. 预测需求 | AI/BI 分析销售数据 | 降低备货风险 |
2. 调整补货规则 | MRP / APS 计算 ROP | 降低库存积压 |
3. JIT 精益库存 | 供应商协同 / 实时库存监控 | 降低持有成本 |
4. 处理呆滞库存 | 数据分析+促销清理 | 释放现金流 |
5. 调整生产计划 | APS 生产优化 | 匹配市场需求 |
✅ 结论
- 库存周转率优化 = 降低库存 + 提高供应链效率
- 核心方法:精准预测 + 精益库存 + 智能补货
- 结合 MRP/APS/WMS 自动优化库存管理
- 数据驱动决策,减少库存成本,提高盈利能力
📌 你是希望实现 库存周转率数据分析,还是 在 ERP/APS 系统中优化库存管理? 😃
有限产能和无限产能的通俗理解
在生产计划和调度(APS、MRP)中,有限产能(Finite Capacity) 和 无限产能(Infinite Capacity) 是两种不同的生产规划方法。用通俗的方式理解,可以把它们比作餐厅接单模式:
🍽️ 无限产能(Infinite Capacity)= “不考虑厨师多少,先接单再说”
- 假设你是一家餐厅老板,你不管厨房有多少厨师、炉灶是否够用,只要有顾客下单,你就接受订单,然后让厨师们尽量去做。
- 结果:
- 订单会积压,导致一些顾客等很久才能上菜(产能超负荷)。
- 厨房可能会出现混乱,导致部分菜品延误或品质下降。
- 但从计划的角度,你不会有订单拒绝,理论上能满足所有需求。
✅ 适用场景:
- 适用于大批量生产、计划优先于现实的情况。
- 适用于短期内不考虑资源瓶颈的快速估算,如 MRP(物料需求计划)。
❌ 问题:
- 现实中,资源(人力、设备、时间)是有限的,导致生产计划不切实际,容易出现延期或产能过载。
🍽️ 有限产能(Finite Capacity)= “根据厨师和炉灶数量合理接单”
- 这次你聪明了,在接单前,你会先看看厨房是否有足够的厨师、炉灶可用。
- 你会根据现有的厨师数量、炉灶可用时间来合理安排订单,如果忙不过来,就调整排程或者拒单。
- 结果:
- 订单不会积压,能确保所有菜按时做好(生产按计划进行)。
- 但可能会有顾客被拒单,或者安排到更晚的时间。
- 生产计划更接近现实,减少了延误和资源浪费。
✅ 适用场景:
- 适用于高端定制、精益生产、需要严格交付期的生产模式。
- 适用于 APS(高级计划排程),考虑实际产能的情况下优化生产。
❌ 问题:
- 需要更复杂的算法和计算,可能导致较长的计划时间。
- 可能会错过一些订单,影响销售额。
📌 关键区别对比
对比项 | 无限产能(Infinite Capacity) | 有限产能(Finite Capacity) |
---|---|---|
计划方式 | 不考虑资源限制,先排产再调整 | 先检查资源,再合理排产 |
结果 | 计划超负荷,容易延期 | 计划更现实,交付更稳定 |
适用场景 | MRP 物料计划、大批量生产 | APS 精准排产、瓶颈管理 |
问题 | 生产容易失控,实际交付可能延误 | 需要更强的计算能力,可能错失订单 |
🛠️ 现实中的应用
- 传统 MRP(物料需求计划)= 无限产能:先计算需求,再想办法安排产能。
- APS(高级计划排程)= 有限产能:先考虑实际可用资源,再生成可执行的生产计划。
- TOC(约束理论)+ 有限产能:先找瓶颈,优化关键资源,提高整体效率。
✅ 结论
- 无限产能适合理论计算,有限产能适合实际执行。
- 如果你想做一个理想的生产计划,先用“无限产能”估算需求。
- 如果你想让生产计划可执行,最终需要用“有限产能”调整排程。
你是想在 APS 系统里实现有限产能排程,还是想了解如何在生产计划中应用这两种方法?😃
JIT
在 APS(高级计划与排程,Advanced Planning and Scheduling) 系统中,JIT(Just-In-Time,准时化生产) 是一种 精益生产(Lean Production) 的关键策略,旨在减少库存、优化资源利用,并在正确的时间提供正确的物料。
📌 JIT 在 APS 系统中的作用
在 APS 系统中,JIT 主要体现在以下几个方面:
- 精确的需求驱动(Pull System):生产和物料供应基于实时订单需求,减少库存积压。
- 精准的生产排程(Optimized Scheduling):APS 计算最优的生产顺序和时间,确保订单按时交付而不提前生产。
- 减少在制品(WIP):优化任务分配,确保工序之间无等待时间或最小等待时间,降低资金占用。
- 供应链协同:通过APS+JIT,供应商能够按需供货,避免原材料或零部件的过早到达。
📌 JIT 在 APS 计划中的实现
1️⃣ 物料需求计划(MRP)+ JIT
- APS 结合 MRP(物料需求计划) 和 JIT,确保原材料的供应时间恰好匹配生产需求。
- 例如,APS 计算:
- 订单交期 D = 10 天
- 生产需要 7 天
- 采购周期 3 天
- 物料应该在第 3 天到达,不提前也不延误。
2️⃣ 动态调整生产计划
- APS 可以实时调整生产排程,确保产线按照最优顺序执行,不产生过量库存。
3️⃣ 实时监控 & 反馈
- 通过 IoT(物联网)+ MES(制造执行系统) 监控生产状态,若某工序提前或延迟,APS 可自动调整后续排程,确保准时交付。
📌 JIT 在 APS 中的好处
✅ 降低库存:减少原材料、WIP 和成品库存。
✅ 减少浪费:避免过量生产和不必要的资源占用。
✅ 提升交付能力:确保生产满足客户需求,避免过早或过晚交付。
✅ 提高生产效率:减少生产等待时间,提高设备利用率。
📌 JIT 在 APS 中的挑战
⚠ 需要高精度预测:订单需求波动可能影响 JIT 的实施,需要精准的数据支持。
⚠ 供应链不确定性:如果供应商交付延迟,JIT 可能导致生产停滞。
⚠ 对信息系统要求高:需要 APS、MES、ERP 无缝集成,确保生产数据实时共享。
📌 适用场景
✅ 汽车制造(如 Toyota 生产模式)
✅ 电子行业(如 Apple 供应链)
✅ 快消品生产(按订单快速调整生产)
JIT 在 APS 系统中是一种高效但要求严格的策略,适合需求稳定、供应链成熟的企业。 你是想在某个特定行业实现 JIT 吗?😃