时间序列(五)股票分析

首先导入相关模块import pandas as pd import pandas_datareader import datetime import matplotlib.pylab as plt import seaborn as sns from matplotlib.pylab impor...

2017-12-11 21:23:44

阅读数:3027

评论数:1

时间序列(四)ARIMA模型与差分

ARIMA模型平稳性: 平稳性就是要求经由样本时间序列所得到的拟合曲线 在未来的一段期间内仍能顺着现有的形态“惯性”地延续下去平稳性要求序列的均值和方差不发生明显变化严平稳与弱平稳: 严平稳:严平稳表示的分布不随时间的改变而改变。 弱平稳:期望与相关系数(依赖性)不变 未来某时刻的t的值...

2017-12-11 20:41:07

阅读数:3530

评论数:0

时间序列(三)滑动窗口

滑动窗口就是能够根据指定的单位长度来框住时间序列,从而计算框内的统计指标。相当于一个长度指定的滑块在刻度尺上面滑动,每滑动一个单位即可反馈滑块内的数据。import matplotlib.pylab import numpy as np import pandas as pd指定六百个数据的序列d...

2017-12-11 15:46:41

阅读数:6141

评论数:0

时间序列(二)数据重采样

数据重采样 时间数据由一个频率转换到另一个频率 降采样 升采样生成一条带随机值的时间序列rng = pd.date_range('1/1/2011', periods=90, freq='D') ts = pd.Series(np.random.randn(len(rng)), index=...

2017-12-11 15:35:43

阅读数:837

评论数:0

时间序列(一)时间序列的生成

时间序列 时间戳(timestamp) 固定周期(period) 时间间隔(interval)date_range¶ 可以指定开始时间与周期 H:小时 D:天 M:月产生时间序列# TIMES #2016 Jul 1 7/1/2016 1/7/2016 2016-07-01 2016...

2017-12-11 15:29:29

阅读数:1852

评论数:0

搭建 Hadoop 伪分布式环境

软硬件环境 CentOS 7.2 64 位 OpenJDK- 1.8 Hadoop- 2.7关于本教程的说明 云实验室云主机自动使用 root 账户登录系统,因此本教程中所有的操作都是以 root 用户来执行的。若要在自己的云主机上进行本教程的实验,为了系统安全,建议新建一个账户登录后再进...

2017-11-23 16:37:36

阅读数:360

评论数:0

Linux (CentOS)安装VNC+XFCE可视化桌面环境 附安装FireFox浏览器

一、检测系统XFCE版本yum grouplist二、安装XFCEyum groupinstall Xfce在安装过程中会出现”Is this ok [y/n]”我们只需要输入y且回车就可以。 比较漫长三、安装VNC桌面系统yum -y install tigervnc-server 四、配置V...

2017-11-23 14:00:36

阅读数:1728

评论数:0

机器学习算法python实现

github:https://github.com/lawlite19/MachineLearning_Python#

2017-11-21 16:12:06

阅读数:98

评论数:0

常见排序算法

冒泡排序冒泡排序是最简单的排序之一了,其大体思想就是通过与相邻元素的比较和交换来把小的数交换到最前面。这个过程类似于水泡向上升一样,因此而得名。举个栗子,对5,3,8,6,4这个无序序列进行冒泡排序。首先从后向前冒泡,4和6比较,把4交换到前面,序列变成5,3,8,4,6。同理4和8交换,变成5,...

2017-11-07 17:45:30

阅读数:125

评论数:0

Python常用函数与技巧总结(三)

主方法:if__name__='__main__':构造方法:def __init__(self): self.xxx=yyy区分公有和私有 公有的正常写 name=’jack’ 私有的前面加两个下划线 __age=12方法: 对象方法具有self参数 def ...

2017-11-05 22:18:03

阅读数:94

评论数:0

Python常用函数与技巧总结(二)

列表生成式 a=[i for i in range(0,5)] print(a)[0,1,2,3,4] filter(function,iterable) 过滤器list(filter(lambda x:x%2,range(10)))维度shape shape[0] 横向几行 ...

2017-11-05 20:24:50

阅读数:72

评论数:0

Python常用函数与技巧总结(一)

一、map(function,iterable,…..)作用:将iterable中的每一个元素应用function方法处理,将结果作为list返回 如: def add100(x): return x+100 hh=[11,22,33] a=map(add100,hh) pri...

2017-11-04 09:02:50

阅读数:457

评论数:0

Matlab基础语法

MATLAB环境的行为就像一个超级复杂的计算器。可以在>>命令提示符下输入命令。 MATLAB是一个解释性的环境。换句话说,用户只要给出一个命令,MATLAB马上执行它。在实践练习之前,首先打开 MATLAB R2017 ,如下图所示 -在命令行窗口中输入有效的表达式,例如 -5 +...

2017-10-30 23:32:36

阅读数:435

评论数:0

火车头采集器-Fiddler工具(1)

界面: 拖拽到浏览器窗口好定位 过滤器设置成只有包含域名的时候才捕获 网址: roll.news.qq.com 观察发现翻页网址链接没有明显变化,这样就不能抓取了,所以要用fiddler软件进行分析点击翻页按钮产生了很多链接,然后复制页面上的关键词,在fiddler中ctrl...

2017-09-28 10:39:42

阅读数:21617

评论数:0

自然语言处理-Word2Vec

拼音检查,关键词检索 文本挖掘(产品价格、日期、时间、地点、人名、公司名) 文本分类 机器翻译 客服系统 复杂对话系统A BC D EF N-Gram模型 指定N等于几就是跟前面几个词相关神经网络模型 输入层,投影层 Hierarchical Softmax

2017-09-28 10:03:57

阅读数:7123

评论数:0

分类算法-支持向量机(SVM)

支持向量机(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。在机器学习中,支持向量机(SVM,还支持矢量网络)是与相...

2017-09-16 15:49:10

阅读数:2291

评论数:0

贝叶斯算法详解

在很多应用中,属性集和类变量之间的关系是不确定的。换句话说,尽管测试记录的属性集和某些训练样例相同,但是也不能正确地预测它的类标号。这种情况产生的原因可能是噪声,或者出现了某些影响分类的因素却没有包含在分析中。例如考虑根据一个人的饮食和锻炼的频率来预测他是否有患心脏病的危险。尽管大多数饮食健康、经...

2017-09-15 12:24:55

阅读数:276

评论数:0

集成算法-Xgboost

Xgboost其实是将弱分类器组合起来的一种算法 核心在于加入新分类器后提升预测能力 惩罚项:欧米伽ft 其中γ是惩罚力度,T是树的个数,w是权重 Xgboost Python实例: 数据集展示: import xgboost # First XGBoost model for Pim...

2017-09-12 21:53:05

阅读数:205

评论数:0

决策树算法详解(3)

from sklearn.tree import DecisionTreeClassifier # 1.criterion gini or entropy# 2.splitter best or random 前者是在所有特征中找最好的切分点 后者是在部分特征中(数据量大的时候)# ...

2017-09-12 20:22:17

阅读数:161

评论数:0

决策树算法详解(2)

Python决策树原生版参考#encoding:utf-8 import mathdef createDataSet(): #训练数据集 dataSet=[['young','myope','no','reduced','no lenses'], ...

2017-09-12 20:18:25

阅读数:122

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭