一、表达式求值
表达式求值问题是:用户输入一个包含“+”、“-”、“*”、“/”、正整数和圆括号的合法数学表达式,计算该表达式的运算结果。
为了方便,假设该表达式都是合法的数学表达式,例如,exp="1+2*(4+12)";在设计相关算法中用到栈,这里采用顺序栈存储结构。
例如: Exp = a*b + (c - d / e) *f
前缀式: + * a b * - c / d e f
中缀式: a * b + c - d / e * f
后缀式: a b * c d e / - f * +
经过分析,表达式的三种表示法有以下特点:
- 操作数之间的相对次序不变;
- 运算符的相对次序不同;
- 若中缀式丢失括号信息,则运算的次序不确定;
- 后缀表达式中已考虑了运算符的优先级,没有括号,只有操作数和运算符。
1)算数表达式exp->后缀表达式postexp
初始化运算符栈op;
将'='进栈;
从exp读取字符ch;
while (ch!='\0')
{ if (ch不为运算符)
将后续的所有数字均依次存放到postexp中,并以字符'#'标志数值串结束;
else
switch(Precede(op栈顶运算符,ch))
{
case '<': //栈顶运算符优先级低
将ch进栈; 从exp读取下字符ch; break;
case '=': //只有栈顶运算符为'(',ch为')'的情况
退栈; 从exp读取下字符ch; break;
case '>': //栈顶运算符应先执行,所以出栈并存放到postexp中
退栈运算符并将其存放到postexp中; break;
}
}
若字符串exp扫描完毕,则将运算符栈op中'='之前的所有运算符依次出栈并存放到postexp中。最后得到后缀表达式postexp;
代码:
struct //设定运算符优先级
{ char ch; //运算符
int pri; //优先级
} lpri[]={{'=',0},{'(',1},{'*',5},{'/',5},{'+',3},
{'-',3},{')',6}},
rpri[]={{'=',0},{'(',6},{'*',4},{'/',4},{'+',2},
{'-',2},{')',1}};
int leftpri(char op) //求左运算符op的优先级
{ int i;
for (i=0;i<MaxOp;i++)
if (lpri[i].ch==op) return lpri[i].pri;
}
int rightpri(char op) //求右运算符op的优先级
{ int i;
for (i=0;i<MaxOp;i++)
if (rpri[i].ch==op) return rpri[i].pri;
}
bool InOp(char ch) //判断ch是否为运算符
{ if (ch=='(' || ch==')' || ch=='+' || ch=='-'
|| ch=='*' || ch=='/')
return true;
else
return false;
}
int Precede(char op1,char op2) //op1和op2运算符优先级的比较结果
{ if (leftpri(op1)==rightpri(op2))
return 0;
else if (leftpri(op1)<rightpri(op2))
return -1;
else
return 1;
}
void trans(char *exp,char postexp[])
//将算术表达式exp转换成后缀表达式postexp
{ struct
{ char data[MaxSize]; //存放运算符
int top; //栈指针
} op; //定义运算符栈
int i=0; //i作为postexp的下标
op.top=-1;
op.top++; //将'='进栈
op.data[op.top]='=';
while (*exp!='\0') //exp表达式未扫描完时循环
{ if (!InOp(*exp)) //为数字字符的情况
{ while (*exp>='0' && *exp<='9') //判定为数字
{ postexp[i++]=*exp;
exp++;
}
postexp[i++]='#'; //用#标识一个数值串结束
}
else //为运算符的情况
switch(Precede(op.data[op.top],*exp))
{
case -1: //栈顶运算符的优先级低:进栈
op.top++;op.data[op.top]=*exp;
exp++; //继续扫描其他字符
break;
case 0: //只有括号满足这种情况
op.top--; //将(退栈
exp++; //继续扫描其他字符
break;
case 1: //退栈并输出到postexp中
postexp[i++]=op.data[op.top];
op.top--;
break;
}
} //while (*exp!='\0')
while (op.data[op.top]!='=')
//此时exp扫描完毕,退栈到'='为止
{ postexp[i++]=op.data[op.top];
op.top--;
}
postexp[i]='\0'; //给postexp表达式添加结束标识
}
2)后缀表达式求值
对后缀表达式求值过程是:从左到右读入后缀表达式,若读入的是一个操作数,就将它入数值栈,若读入的是一个运算符op,就从数值栈中连续出栈两个元素(两个操作数),假设为x和y,计算x op y之值,并将计算结果入数值栈;对整个后缀表达式读入结束时,栈顶元素就是计算结果。
while (从postexp读取字符ch,ch!='\0')
{ 若ch为数字,将后续的所有数字构成一个整数存放到数值栈st中。
若ch为“+”,则从数值栈st中退栈两个运算数,相加后进栈st中。
若ch为“-”,则从数值栈st中退栈两个运算数,相减后进栈st中。
若ch为“*”,则从数值栈st中退栈两个运算数,相乘后进栈st中。
若ch为“/”,则从数值栈st中退栈两个运算数,相除后进栈st中(若除数为零,则提示相应的错误信息)。
}
若字符串postexp扫描完毕,则数值栈op中的栈顶元素就是表达式的值。
代码:
float compvalue(char exp[]) //计算后缀表达式的值
{ struct
{ float data[MaxSize]; //存放数值
int top; //栈指针
} st; //定义数值栈
float d; char ch; int t=0; //t作为exp的下标
st.top=-1; ch=exp[t];t++;
while (ch!='\0') //exp字符串未扫描完时循环
{ switch (ch)
{
case'+':st.data[st.top-1]=
st.data[st.top-1]+st.data[st.top];
st.top--;break;
case '-':st.data[st.top-1]=
st.data[st.top-1]-st.data[st.top];
st.top--;break;
case '*':st.data[st.top-1]=
st.data[st.top-1]*st.data[st.top];
st.top--;break;
case '/':
if (st.data[st.top]!=0)
st.data[st.top-1]=
st.data[st.top-1]/st.data[st.top];
else
{ printf("\n\t除零错误!\n");
exit(0); //异常退出
}
st.top--;break;
default:
d=0; //将数字字符转换成数值存放到d中
while (ch>='0' && ch<='9') //为数字字符
{ d=10*d+ch-'0';
ch=exp[t];t++;
}
st.top++; st.data[st.top]=d;
}
ch=exp[t];t++;
}
return st.data[st.top];
}
二、求解迷宫问题
求迷宫问题就是求出从入口到出口的路径。在求解时,通常用的是“穷举求解”的方法,即从入口出发,顺某一方向向前试探,若能走通,则继续往前走;否则沿原路退回,换一个方向再继续试探,直至所有可能的通路都试探完为止。为了保证在任何位置上都能沿原路退回(称为回溯),需要用一个后进先出的栈来保存从入口到当前位置的路径。
为了表示迷宫,设置一个数组mg,其中每个元素表示一个方块的状态,为0时表示对应方块是通道,为1时表示对应方块为墙。
1)算法设计
对于迷宫中的每个方块,有上下左右四个方块相邻,如下图所示,第i行第j列的当前方块的位置为(i,j),规定上方方块为方位0,顺时针方向递增编号。
在试探过程中,假设从方位0到方位3的方向查找下一个可走的方块。
为了便于回溯,对于可走的方块都要进栈,并试探它的下一可走的方位,将这个可走的方位保存到栈中,为此将栈定义为:
typedef struct
{ int i; //当前方块的行号
int j; //当前方块的列号
int di; //di是下一可走相邻方位的方位号
} Box; //定义方块类型
typedef struct{ Box data[MaxSize];
int top; //栈顶指针
} StType; //顺序栈类型
2)实现代码
bool mgpath(int xi,int yi,int xe,int ye)
//求解路径为:(xi,yi)->(xe,ye)
{ int i,j,k,di,find;
StType st; //定义栈st
st.top=-1; //初始化栈顶指针
st.top++; //初始方块进栈
st.data[st.top].i=xi; st.data[st.top].j=yi;
st.data[st.top].di=-1; mg[xi][yi]=-1;
while (st.top>-1) //栈不空时循环
{ i=st.data[st.top].i;j=st.data[st.top].j;
di=st.data[st.top].di; //取栈顶方块
if (i==xe && j==ye) //找到了出口,输出路径
{ printf("迷宫路径如下:\n");
for (k=0;k<=st.top;k++)
{ printf("\t(%d,%d)",st.data[k].i,st.data[k].j);
if ((k+1)%5==0) //每输出每5个方块后换一行
printf("\n");
}
printf("\n");
return true; //找到一条路径后返回true
}
find=0;
while (di<4 && find==0) //找下一个可走方块
{ di++;
switch(di)
{
case 0:i=st.data[st.top].i-1;j=st.data[st.top].j;
break;
case 1:i=st.data[st.top].i;j=st.data[st.top].j+1;
break;
case 2:i=st.data[st.top].i+1;j=st.data[st.top].j;
break;
case 3:i=st.data[st.top].i,j=st.data[st.top].j-1;
break;
}
if (mg[i][j]==0) find=1; //找到下一个可走相邻方块
}
if (find==1) //找到了下一个可走方块
{ st.data[st.top].di=di; //修改原栈顶元素的di值
st.top++; //下一个可走方块进栈
st.data[st.top].i=i; st.data[st.top].j=j;
st.data[st.top].di=-1;
mg[i][j]=-1; //避免重复走到该方块
}
else //没有路径可走,则退栈
{ mg[st.data[st.top].i][st.data[st.top].j]=0;
//让该位置变为其他路径可走方块
st.top--; //将该方块退栈
}
}
return false; //表示没有可走路径,返回false
}