1 大模型落地现状
-
国外现状:
- 企业应用广泛:92%的世界500强企业已采购ChatGPT,表明大模型在商业领域的普及率极高,成为企业提升效率的重要工具;
- 科技巨头深度整合:微软、苹果、谷歌等公司将大模型服务嵌入操作系统,推动AI技术从工具向基础设施转型,用户接触门槛进一步降低;
- 硬件需求激增:英伟达市值飙升反映了大模型对算力的依赖,其GPU作为训练核心硬件,市场需求持续旺盛;
-
国内现状:
-
政策驱动采购:政府、国企、央企积极响应人工智能发展号召,基础模型采购活跃,都在努力找标杆项目;
-
民企两极分化:
- 有研发能力的企业加速布局(如内部升级、招聘人才);
- 无研发能力的企业通过AI工具或外包合作实现自动化,部分已尝试产品化盈利。
-
意识差距明显:部分企业仅停留在工具使用阶段,而先进者已探索商业化变现,如自动化服务或AI产品输出。
-
-
整体趋势:
- 盈利模式差异:
- 2C(消费者端):尚未盈利,可能因用户付费意愿低或场景不成熟;
- 2B(企业端):已有成功案例,但需结合具体场景(如降本增效、流程优化);
- 案例库价值:Docs中包含实际落地案例,可作为行业参考,帮助理解技术如何与业务结合;
- 盈利模式差异:
-
关键结论
- 技术普及加速:国内外企业均在快速拥抱大模型,但应用深度不同,国外更侧重系统级整合,国内受政策推动且分层明显;
- 商业化挑战:2B模式更易变现,而2C需等待成熟场景;硬件(如英伟达)和基础设施提供商成为当前最大赢家;
- 未来方向:标杆项目的挖掘、细分场景的深耕(如医疗、金融)、以及降低技术使用成本将是重点。
2 创业机会在哪里?
-
目前投资领域的共识
-
基础大模型不再受青睐
- 原因:技术壁垒下降、竞争白热化,大厂主导(如OpenAI、谷歌、国内BAT),创业公司难以独立生存;
- 现状:基础模型已沦为“战略资源”,需依附大厂生态(如通过API合作);
-
硬件成为新焦点
- 方向:智能眼镜、具身智能(如机器人)等融合AI的硬件设备;
- 逻辑:硬件是AI落地的物理载体,差异化空间较大,且大厂尚未完全垄断;
-
AI应用的分层投资策略
- 优先投团队:
- 阿里P10级背景(技术+行业经验);
- 成功创业者二次创业(已验证执行力);
- 顶级名校背景(技术或资源壁垒);
- 警惕大厂竞争:与大厂业务重叠的项目直接pass;
- 商业模式验证:早期项目需至少展示清晰的商业逻辑(即使未盈利);
- 优先投团队:
-
-
AI 大模型不是造富神话,但会让每个岗位都变化(上)文章中,对大模型行业态势的预判:
-
AI原生应用无机会
- 核心矛盾:大模型未创造新场景,仅优化现有场景(如客服、文案生成);
- 结果:旧霸主(如Adobe、微软)通过整合AI加固护城河,创业者难突围;
- 案例:Apple Intelligence直接内置系统级AI,挤压第三方工具空间;
-
基础大模型内卷
- 现象:价格战(如GPT-4降价)、技术同质化(Llama3、文心一言功能趋同);
- 结论:创业公司需“被包养”(如Anthropic依赖亚马逊投资);
-
垂直细分是普通人的机会
- 策略:聚焦小众需求(如“只为 5000 人写一个软件,体验足够好,每月收 10 元钱”),避开大厂射程;
- 优势:
- 低成本:1人+AI即可开发;
- 高付费意愿:解决具体痛点(如律师合同审核、跨境电商文案生成);
- 可持续:月收入5万即可支撑迭代或扩展新品类;
- 原因:
- 这种机会大厂不爱做;
- AI 提升用户体验,创造收费价值;
- 产品复杂度不高,一人+AI 足以完成;
- 每月收入 50000 元,足够体面生活;
- 维护阶段可以再做新产品,找新的增长点。
-
3 AI 应用1~5年预测
-
核心趋势:私人助理成为新入口
-
取代传统操作系统
- 现状:当前用户通过操作系统(如Windows、iOS)访问应用,操作链条长、体验割裂;
- 未来:私人助理(如Copilot、Siri升级版)将作为统一入口,直接理解需求并调度服务,操作系统退化为底层基础设施;
- 类比:如同微信小程序弱化了App Store的地位,私人助理将弱化操作系统的中心性;
-
生态逻辑重构
- 私人助理:担任“总调度员”,负责理解用户意图、分配任务、整合结果;
- Agent:垂直领域的服务提供者(如订机票Agent、法律咨询Agent),专注功能与数据;
- 关系:私人助理通过API调用Agent,用户无需直接接触Agent,实现“无感服务”;
-
-
Agent的核心价值
-
独特资源壁垒
- 数据:如医疗Agent拥有罕见病例库,教育Agent掌握个性化学习路径;
- 工作流:优化复杂流程(如跨境电商的报关、物流自动化);
- Prompt工程:针对细分场景的高效指令集(如“生成符合FDA标准的药品说明书”);
- 关键结论:Agent的竞争力在于不可替代的垂直深度,而非花哨的交互形式(虚拟形象等);
-
文本交互为主
- 原因:文本是最高效的信息载体,且兼容所有场景(语音、图像需额外转换成本);
- 案例:即使订餐Agent,用户只需说“周三晚5人川菜预算500”,无需看图选店;
-
-
对现有平台的颠覆
-
中间层平台(美团、滴滴)的危机
- 现状:平台作为撮合方,抽成且体验冗余(需比价、评分、选择);
- 未来:私人助理直接对接服务提供者(如餐厅、司机),基于历史数据自动决策;
- 例如:用户说“回家”,助理直接调用“最优路线Agent”完成打车,跳过滴滴App;
- 例外:需强信任的领域(医疗)可能保留平台审核,但流程极大简化;
-
商业模式的迁移
- Agent的盈利:通过API调用次数或订阅制收费(如“法律Agent”按咨询量计费);
- 私人助理的盈利:可能延续现有生态(如微软Copilot绑定Office订阅);
-
-
关键挑战与机会
-
挑战
- 数据隐私:私人助理需访问全维度数据(日历、位置、消费记录),安全风险高;
- Agent标准化:如何统一接口、服务质量评估和分成机制;
-
创业机会
- 开发垂直Agent:聚焦细分领域(如“宠物保险索赔Agent”),抢占早期生态位;
- 工具链支持:提供Agent开发框架(如AutoGPT优化版)、数据合规解决方案;
-
-
总结与行动建议
-
对用户:未来只需“动口”,私人助理解决一切,体验更无缝;
-
对企业:
- 大厂争夺私人助理入口(如苹果、谷歌、微软);
- 创业者All in垂直Agent,避免与通用型产品竞争;
-
对开发者:学习Agent开发技术(如强化学习、工作流自动化),关注开放生态(如ChatGPT Plugin体系);
-
-
预测可信度:
-
技术层面:多模态大模型和API经济已支持此趋势;
-
商业层面:用户对“一站式服务”的需求持续增长,中间层平台的冗余成本将被淘汰;
-
-
延伸思考:若私人助理成为唯一入口,是否会产生新的垄断?如何防止“助理霸权”?这可能是监管的未来课题。
4 怎么找这样的机会?
-
“AI 改变万行千业,要从最熟悉的行业找机会”;
-
误区纠正:
-
人们常将大模型技术与互联网、移动互联网对比,期待出现杀手级应用(killer app)是错误的 ;
-
应将大模型技术类比蒸汽机,其作用是让传统行业升级,而非创造新行业;
-
蒸汽机车发明人乔治·斯蒂芬森之前是矿山机械师;
-
蒸汽船发明人罗伯特·富尔顿之前是潜水艇工程师;
-
蒸汽纺纱机发明人理查德·阿克赖特之前发明了水力纺纱机 ;
-
-
-
建议
- 别轻易转行:自身所处行业是优势。因为他人在该行业可能更懂行、资源更多,换行业成功概率也未必高;
- 成为三懂人才:
- 要成为懂业务、懂AI、懂编程的人才,其中业务是关键;
- 还提到业务是一切的基石,越下游岗位越易被AI替代,既懂业务又懂AI以及三者都懂的人才稀缺;
- 整体是在引导人们在AI浪潮下,立足熟悉行业,提升综合能力来把握发展契机。
5 独立开发者
5.1 什么是独立开发者(Indie Hacker)
-
定义与身份:
- 指不依赖大型组织或团队,独立进行软件产品、在线服务或数字工具开发,并自主运营以获取收入的人;
- 他们兼具开发者和创业者双重身份,通过自身技术能力与业务理念打造产品 ,实现独立自由的工作模式;
-
团队规模:
- 通常是一人单干,也可能是由少数人组成的小团队;
- 人员精简,这要求成员往往需具备多方面技能,身兼数职;
-
产品特点:
- 产品倾向 “小而美”;
- 意味着规模和复杂度相对适中,不过度追求大而全 ,但注重在细分领域做到精致、体验好,能精准满足特定用户群体需求,且具备可观商业价值,足以支撑团队生存和发展;
-
优势与能力要求
-
自主性高:可自由选择项目,按自身节奏和理念开发,充分实现个人价值与创意;
-
灵活性强:决策迅速,能快速响应市场变化和用户反馈,及时调整产品方向;
-
技能复合:需掌握多领域技能,如编程、设计、营销、销售等,既要能实现产品技术功能,又得懂市场推广和运营;
-
-
发展背景与现状:
- 伴随数字平台兴起,创业门槛降低,独立开发者群体逐渐壮大;
- 像Product Hunt、Hacker News等平台为其提供交流、展示作品及获取反馈的空间 ,推动个人技术向商业机会转化;
- 当下借助在线工具、全球市场和低成本技术,独立开发者能更高效推出产品。
5.2 成功的独立开发者们
-
独立开发 SiteGPT 和 feather 两个产品的印度小哥 Bhanu Teja Pachipulusu:
-
SiteGPT.ai 踩到了 AI 风口。Feather 被 25 万美元收购;
-
flomo - 浮墨笔记;
-
主页:flomo · 浮墨笔记;
-
-
小猫补光灯;
- 非程序员的独立开发者,开始出现;
- 用Cursor AI写出AppStore付费榜第一的产品后,这是我给新手学习AI编程的7条建议。
5.3 大模型时代前所未有的独立创业机会
-
大模型时代独立创业机会:
-
基础设施便利:云计算提供了便捷的基础设施,降低创业技术门槛;
-
AI助力能力提升:AI可提升需求分析、设计、编程等效率,让创业者能完成过去难以做到的事;
-
细分场景需求:
- 大量场景需AI化,如Prompt调优、工作流拆解、建私有知识库等,为创业者提供细分赛道;
- 随着模型能力增强、技术成熟、用户预期理性,有效应用增多,端侧模型普及有望带来应用爆发;
-
-
独立开发与打工对比(此表描述的是通常情况,非特例情况)
独立开发 打工 收入 不稳定 稳定 收入量级 正常 正常 时间 自由 受限 工作内容 自由 受限 成长 自由 受限 抗风险 弱 强 为谁负责 客户、自己和家人 老板、同事、客户、自己和家人 -
自由是独立开发最大特点,但自由需自律和决策能力。但自律和决策哪个更重要?
5.4 做好独立开发,最重要的是自律
- 宏观看,执行永远比思考更重要,建议思考占用的精力别超过 10%;
- 别信成功学的“选择比努力重要”,那是小概率事件,且做对选择也要努力才能拿到结果;
- 靠谱的思考来源于执行的总结;
- 别期待完美的思考,有点儿小念头就立即执行,边执行边修正;
- 埋头执行容易陷入惯性,所以需要时不时跳出来做思考;
- 独立开发是对执行力极大的考验,需要强大的自律。
5.5 如何自律
- 正路:做有即时反馈的事情,用成就感驱动;
- 偏门:
- 定目标,并说出去。比如发到朋友圈。参考罗振宇的十年 60 秒语音、20 年跨年演讲、20 年《文明之旅》;
- 设惩罚,找人监督。比如我每日运动不满 110 分钟,就发红包;
- 家里划定独立办公空间,甚至专门租用;
- 但一定要给自己安排休息时间。
5.6 注册公司
- 虽然没有公司,也可以做独立开发,但强烈建议注册,因为:
- 有些客户只能和公司合作;
- 有些资质、知识产权只有公司才能申请;
- 缴社保等方便;
- 到哪注册
- 驻地,办事方便;
- 其它有利好扶持政策的地方,但人最好也能过去;
- 注册要点
- 注册成本很低。找靠谱代理机构,流程、代账、地址,几千元搞定;
- 注册类型,从小规模纳税人起步(税率 1-3%)。经营规模大了(连续 9 个月超 500 万收入),或者受资质限制了,再转一般纳税人(税率 6%)。
5.7 日常事务工作
-
合同谈判、起草、签署(用 ChatGPT 写合同,超爽);
-
申请软件著作权、商标、备案;
-
财务相关;
-
虽然有专业机构代理,但也还是耗精力,挺烦的。
5.8 管理兼职
- 兼职最大的成本不是薪资,而是沟通成本;
- 薪资
- 按效果付费:适用于工作成果与收益正相关场景,能让雇主与兼职者共担风险,激励兼职者达成更好结果;
- 按件付费:针对工作结果与收益关联不大情况,雇主需控制价格,因风险主要由雇主承担,可降低成本风险;
- 按月付费:用于工作量难估计情形,虽管理成本高,但能确保兼职者有稳定工作时长和收入保障;
- 沟通。降低沟通成本的方法:
- 提升沟通频率:通过高频沟通,及时发现并解决问题,防止后期返工,减少时间和资源浪费;
- 提升沟通带宽:
- 优先面对面沟通:能直接传递信息、获取反馈,增进理解。条件不允许时,首次沟通也尽量采用视频等方式;
- 丰富沟通载体:借助文档、图表等工具,使信息传达更具体、丰富、准确,减少歧义;
- 采用协作工具:利用协作型文档和图表,实现产出物实时共享,便于双方同步了解工作进展、及时沟通调整 。 整体为管理兼职人员提供了薪资设定和沟通管理方面的实用策略。
5.9 难点
- 起步阶段,很难有收入。时间可能长达半年、一年……
- 遇事难以求助,只能自己解决;
- 一叶扁舟,遇到大风浪,很难抵挡。
5.10 如何决策要不要走这条路
-
如果前面所述不是你愿意面对的,那么就别做独立开发了;
-
如果还想做,建议:
-
若现在有稳定收入
- 别轻易放弃当前收入;
- 工作之余做一段时间的副业,积累经验和成果,看看自己是否适合,有眉目了再考虑全职;
- 多一手准备,肯定没错;
-
若现在无稳定收入。在找工作和独立开发各放一半精力,因为:
- 现在找工作,挺难的;
- 找工作不可能占满所有时间;
- 独立开发的经验和成果可以帮助找工作,反之不成立;
- 如果独立开发做顺了,就不需要找工作了。但有了工作,也还需要独立开发来兜底;
- 找工作常有挫败感,可以用独立开发的阶段成果来滋养自己;
-
-
从事独立之后,要么很想回公司,要么特别不想回公司。
5.11 参考阅读
-
特别推荐:
-
其他:
6 在公司内的“独立开发者”
-
定义:在想实现AI化的公司中,那些懂业务、懂AI 、懂编程(至少懂其中两项甚至三项)的人才,被视为公司内的 “独立开发者”;
-
相比独立公司的独立开发者:
-
保障与自由:相比独立公司的独立开发者,公司内的 “独立开发者” 享有公司提供的诸如薪资福利、工作资源等保障,但在工作自主性和自由度上相对受限;
-
团队与技术支持:有团队协作环境,但在技术实现方面,主要依靠自身能力结合AI工具,不像在专业技术团队中能获得全面的技术支持;
-
-
发展建议:
-
核心竞争力打造:能够为业务落地提供最佳AI方案,是在公司内立足和发展的关键能力,能凸显个人价值,拉开与他人差距;
-
业务深耕:
- AI与业务特性差异:AI技术发展迅速且不断迭代进步,但业务领域知识具有相对稳定性和独特性,深入掌握业务知识是不可替代的优势;
- 避免低端定位:不能仅满足于像内部外包人员一样单纯执行任务,要深入参与业务,挖掘业务需求与痛点,主动运用AI技术提供创新解决方案。
-
7 AI对软件产品开发流程的改变
-
AI 率先改变的是软件工程界,产品开发流程发生下面的变化:
-
传统开发流程:依次为需求分析、产品设计、前端开发、后端开发、测试。各阶段相对独立,按顺序推进;
-
AI化开发流程
-
需求分析后增加搭demo:需求分析后,借助工具(如Coze、Dify、Gradio)快速搭建演示模型(demo),用于验证可行性、探索真实场景。此阶段调试prompt,不改动代码来验证需求;
-
构建数据集:搭建demo后构建数据集,涉及训练集、验证集、测试集;
-
产品设计调整:构建数据集后进行产品设计,与传统顺序不同;
-
全栈开发:取代传统的前端和后端开发分离模式,利用AI编程提效并降低沟通成本。之后进入测试阶段,与传统流程类似;
-
-
-
主要改变:
-
需求阶段新方式:在需求阶段通过调试prompt验证可行性,无需改动代码,且后续迭代中prompt独立维护,不与代码耦合;
-
快速搭建demo:借助工具快速搭建demo验证需求,加快前期验证速度;
-
开发模式转变:从前后端分离开发转变为全栈开发,借助AI提升开发效率、降低沟通成本。 整体体现了AI使软件开发流程在前期验证、开发模式等方面发生变革,以提高开发效率和响应速度。
-
8 立项
8.1 引言
-
在项目立项阶段需对以下三个要素有初步答案:
- 真实需求:即用户实际存在且亟待解决的问题或期望满足的诉求。明确真实需求是产品价值的基础,能确保产品贴合用户痛点;
- 商业模式:关乎产品如何盈利,如通过付费购买、订阅、广告投放、佣金抽取等方式,是项目可持续发展的经济保障 ;
- 推广渠道:指将产品推向目标用户的途径,像社交媒体平台、搜索引擎营销、线下活动等,决定产品的曝光度和触达范围 ;
-
虽三个要素都需考虑,但建议先确定推广渠道,再据此确定商业模式、寻找真实需求 。原因如下:
- 精准定位用户:推广渠道决定了能触达的用户群体特征,先明确渠道有助于精准定位目标用户,后续工作围绕目标用户展开更具针对性;
- 防范竞争风险:不掌握推广渠道,产品易被渠道掌控方抄袭或被分走利润。先确定渠道可提前布局,保障自身利益;
- 弥补能力短板:推广渠道和商业模式通常并非程序员等技术人员擅长领域,提前规划可避免后期因这些短板导致项目受阻;
- 避免盲目行动:若一开始过度聚焦需求,易陷入空想和兴奋,而忽视推广和商业模式规划。先确定后两者,能让项目启动更理性、更具可行性。
8.2 推广渠道
-
核心问题:立项阶段只需明确 “到哪找100个种子用户,或1 - 2个种子客户”;
- 种子用户/客户是产品初期的关键群体,他们愿意尝试新产品,能提供反馈助力产品优化;
- 明确获取他们的途径,是产品推广迈出的重要一步;
-
选择依据:
-
触达便利性:若用户/客户容易触达,在推广时能更高效传递产品信息,降低沟通成本,提升推广效率;
-
需求理解度:身边的用户/客户意味着对其需求和痛点更熟悉,产品开发和推广能更贴合其实际需求,增加产品被接受的可能性;
-
-
推论解读:
- “赚钱要先赚熟人的,不丢人” ,强调在创业或产品推广初期,可借助与熟人的信任基础和了解程度,优先向熟人推广产品或服务;
- 熟人对自身和产品有一定信任度,更易接受和尝试,能为项目初期带来收入和反馈,助力项目起步,不应觉得向熟人推广是不妥之事。
8.3 可行的商业模式
-
常见的商业模式:
模式 说明 2C 产品 2B 产品 免费模式 免费使用,广告/增值服务变现 微信、抖音、王者荣耀、ChatGPT、Bing Chat GitHub、钉钉、飞书 计费模式 按次/按量/按时长收费 滴滴打车、共享单车、共享充电宝 云服务器、云数据库、云存储 订阅模式 包月、包季、包年 网易云音乐、爱奇艺、ChatGPT Plus、GitHub Copilot GitHub Copilot 一次性付费 购买一次,终身使用 Alfred、塞尔达传说 Confluence、JIRA、Windows、外包项目 -
适合独立开发者/ AI 的模式:
- 避免烧钱原则:若用户不愿付费,说明需求定位可能有误,产品需精准把握市场需求,确保有付费意愿支撑;
- 2B 外包项目:建议采用一次性付费,且要做好只收到首付款的风险准备,考虑到 2B 项目执行过程中的不确定性;
- 订阅制优势:
- 每月固定收入,缓解增长压力;
- 存在用户忘记退订情况(国内获取权限较难);
- 与按 token 算成本的 AI 产品更匹配,类似手机流量套餐计费方式,稳定且便于成本核算;
-
支付宝周期扣款的准入条件:
- 在开通时,商家需要在线提交营业执照,注册资本大于等于 100 万人民币;
- 企业无经营风险,包含但不限于工商信息可查询到的风险信息:行政处罚、股权冻结、股权质押、动产抵押、动产抵押物等;
-
微信支付的门槛更高,参考「微信支付——扣款服务(委托代扣)最全资料整理」。基础条件:
- 商户需要提供服务电话(要求通过微信支付认证,并展示在账单详情页中);
- 接入商户一个月内整体客诉已经妥善处理并反馈平台,近一个月客诉小于万分之一(含主体);
- 商户主体无违规;
- 接入代扣业务需要有一定的交易量要求,3 个月以上,主动支付的日交易笔数超过 1000 笔;
-
要融资吗?
- 国内风投现状:
- 国内风投投项目时,主要关注利润分红可能性,所以项目一开始就需有可行商业模式;
- 出海项目虽会兼顾长期回报,但也需尽早验证商业模式,体现风投对投资回报确定性的重视;
- 融资考量情况:
- 烧钱验证想法:当有宏大创新想法但无法低成本验证,需大量资金投入时,可考虑风投,但要坚守底线,避免过度出让权益;
- 模式验证后扩张:商业模式已验证成功,需资金快速扩大规模时,可考虑融资,优先选择正规借贷而非风投,减少股权稀释和外部干预;
- 获取额外资源:当需要投资人提供品牌、生态、渠道、人脉等除资金外的资源时,可考虑引入投资,借助外部资源加速项目发展;
- 融资建议:强调无融资经验时不要贸然融资,应找有经验的人协助,避免因不熟悉融资流程和风险,陷入不利局面。
- 国内风投现状:
-
为什么 AI 产品采用订阅模式的更多?
-
稳定的现金流:
- AI模型的训练和运行需要持续投入高昂的资金,用于购买大量的计算设备、数据存储以及专业的技术人才等;
- 订阅模式能为企业提供稳定可预测的收入,确保有足够的资金来维持产品的开发、优化和运营,保障服务的连续性;
-
提升用户体验:
- 订阅模式可以为用户提供更稳定、更优质的服务,如更快的响应速度、更强大的功能以及优先使用权等;
- 同时,企业可以利用订阅模式收集用户数据,通过AI算法进行分析,为用户提供个性化的服务和内容推荐,满足不同用户的需求,增强用户粘性和忠诚度;
-
降低用户门槛:
- 许多AI产品会提供免费试用或基础免费版本,让用户在无成本的情况下体验核心功能,当用户对产品有了一定的了解和认可后,再引导其升级为付费订阅用户;
- 这种方式降低了用户的使用门槛,有助于扩大用户基础,将大量免费用户转化为付费用户;
-
适应产品特点:
- AI产品的价值往往难以在一次性购买中完全体现,其功能会随着时间不断更新和优化,用户需要持续使用才能获得更多的价值;
- 订阅模式与AI产品的这种特点相契合,用户按周期付费,能够持续享受到产品的更新和升级服务,企业也能根据用户的反馈和市场需求不断改进产品;
-
便于成本核算:
- 对于按token计算成本的AI产品,订阅模式类似手机流量套餐计费方式,稳定且便于成本核算;
- 企业可以根据订阅用户的数量和使用情况,更准确地预估成本和收益,合理安排资源。
-
8.4 找到真实需求
-
真实需求难寻现状:
- 超过半数产品经理难以找到真实需求;
- 人们语言和行为表达的需求常非真实需求 ,如
- ”酱香拿铁“卖爆了,买的人是为了喝咖啡吗?
- 妈妈要你给她买生日蛋糕,她是没钱买还是想吃蛋糕?
- 女朋友要你接她下班,你说:我给你出打车费……
-
寻找需求的方法:
-
5 why法:
-
丰田公司创始人——丰田佐吉提出一种“找根本原因”的方法,即通过对需求不断追问 “为什么” ,层层深入找到根本原因;
-
实战中通常追问2 - 3个 “为什么” 就能找到真需求;
-
但该方法存在缺陷,一是对业务理解不足时,追问易让对方不耐烦;二是有时显得不礼貌;
-
-
躬身入局法:
- 即亲自去做一遍业务,一遍不行就多做几遍;
- 像高途让新入职产研做一个月销售、美团骑手线产品经理送外卖,通过亲身体验深入了解业务需求;
- 缺点是成本高,包括时间和资源成本,且有些业务难以亲身参与,此时可全程跟随观察;
-
-
行动建议:
- 针对付费能力群体,约最熟悉的三个人吃饭,和他们聊AI,让其分享业务,从中找出AI能解决的真实需求;
- 整体为产品经理等相关人员提供了寻找真实需求的方法和实践方向。