木木慕慕
一位涉猎广泛的编程小白,请指教!
展开
-
AI全栈工程师——20 产品运营
运营概述、获客、转化、留存、沟通、扩展学习。原创 2025-04-30 10:30:28 · 154 阅读 · 0 评论 -
AI全栈工程师——19 产品设计
产品设计、怎么优雅地借鉴产品、写PRD、AI 产品设计原则、原型设计、极简 UI 设计原则、快速搭 demo、开发、迭代、扩展学习。原创 2025-04-30 10:29:12 · 22 阅读 · 0 评论 -
AI全栈工程师——18 大模型时代的创业机遇
大模型落地现状、创业机会在哪里、AI 应用1~5年预测、怎么找这样的机会、独立开发者、在公司内的“独立开发者”、AI对软件产品开发流程的改变、立项原创 2025-04-30 10:22:24 · 100 阅读 · 0 评论 -
AI全栈工程师——17 AI产品部署和交付(下)
高稳定和高可用地部署模型、如何在阿里云私有部署开源大模型、基于 vLLM 部署大模型、分布式推理、基于云端部署大模型、部署开源 LLM 项目、内容安全、破解内置提示词、互联网信息服务算法备案与相关法规。原创 2025-04-30 10:14:25 · 196 阅读 · 0 评论 -
AI全栈工程师——17 AI产品部署和交付(上)
硬件选型、LPU™ 推理引擎、物理机 VS 云服务、云服务厂商对比、算力平台、服务器价格计算器、全球大模型、搭建 OpenAI 代理、国产大模型、在本地部署大模型、其它开源平台。原创 2025-04-30 10:00:36 · 217 阅读 · 0 评论 -
AI全栈工程师——16 视觉生成模型
判别式模型 VS 生成式模型、视觉生成模型基础、文生图模型介绍、3D 目标生成方法一览、视频(电影)生成方法、工具原创 2025-04-30 09:45:02 · 21 阅读 · 0 评论 -
AI全栈工程师——15 多模态大语言模型
多模态大语言模型(MLLM)的定义、多模态(图-文)模型的发展历程、多模态大语言模型的应用、图文对话系统的搭建、Beyond VL:支持更多模态输入的大语言模型、使用多模态大语言模型完成更多任务原创 2025-04-28 10:05:19 · 165 阅读 · 0 评论 -
AI全栈工程师——14 Agent模型微调
Agent Tuning 旨在让大模型尤其是小参数模型具备 Agent 能力,其训练流程涵盖数据准备、模型训练和效果评估。为设计高效的 Agent,文中介绍了多种 Prompt 模板。提升 Agent 泛化性可从训练数据多样性和 Meta - Agent 方法入手。此外,还介绍了 ToolBench、AgentTuning、KwaiAgents 三个开源项目。总之,文章全面阐述了大模型 Agent 的应用、优化及相关技术,为其发展和应用提供了理论与实践指导。原创 2025-04-25 15:59:55 · 137 阅读 · 0 评论 -
AI全栈工程师——13.5 神经网络知识扩展
通过正经讲解和通俗讲解(比喻)的方式,本文讲解了神经网络的梯度怎么算,过拟合、欠拟合与学习率(介绍了3种防止过拟合的方法),以及自然语言处理常见的网络结构(TextCNN、RNN、LSTM、GRU、Attention)等。原创 2025-04-25 09:40:46 · 37 阅读 · 0 评论 -
AI全栈工程师——13 模型微调
先简单介绍了一下什么是模型微调,然后通过一个微调对用户输入的电影评论进行情感分类的模型案例快速入门,然后介绍了什么是模型、求解器、一些常用的损失函数,然后用MNIST数据集案例总结。最后讲解Transformer 结构和轻量化微调的两种方式:LoRA和QLoRA,用酒店客服机器人的微调案例练手。最后的最后讲解了数据准备与处理。原创 2025-04-23 09:36:09 · 26 阅读 · 0 评论 -
AI全栈工程师——12 神经网络与Transformer详解
小学生都能看得懂的神经网络与Transformer教程!!!从模型就是一个数学公式引出神经网络,讲解了神经网络的公式结构和参数设计。再讲解Transformer模型是如何理解用户的输出并给出对应的输出的,包括Tokenization、Embedding、Encoder和Decoder、注意力机制和自注意力机制等。原创 2025-04-21 20:52:29 · 154 阅读 · 0 评论 -
AI全栈工程师——11 工作流
为什么需要工作流?本文将带你一探究竟。先从哪些因素会影响大模型应用的效果来引出工作流,然后介绍吴恩达的开源翻译工作流项目,再用LangGraph和Agently Workflow分别复现这个工作流,接着解析大模型应用工作流的关键要素,最后给出一个复杂工作流的案例——故事创作(让你学会使用AI写小说)。原创 2025-04-21 15:03:49 · 39 阅读 · 0 评论 -
AI全栈工程师——10 手撕Agent
从零开始自定义设计并实现了一个Agent,自动选择使用以下工具回答用户的问题:查看目录下的文件、基于给定的文档回答用户问题、查看与分析 Excel 文件、撰写文档、调用 Email 客户端发邮件等。原创 2025-04-20 19:24:34 · 279 阅读 · 0 评论 -
AI全栈工程师——9 LLM应用开发工具链
介绍两个生产级 LLM App 维护平台:LangFuse和LangSmith。可以在生产过程中,可以用于对LLM应用进行监控与统计、Prompt调试与优化、评估与测试、数据集中与版本管理。原创 2025-04-20 10:05:17 · 59 阅读 · 0 评论 -
AI全栈工程师——8 LangChain
九万字长文讲解了一套面向大模型的开发框架——LangChain。主要从以下几个方面展开讲解:核心组件、模型 I/O 封装、数据封装连接、对话历史管理、Chain 和 LCEL、智能体架构:Agent、LangServe、LangChain.js、LangChain 与 LlamaIndex 的错位竞争。原创 2025-04-19 15:19:41 · 490 阅读 · 0 评论 -
AI全栈工程师——7 LlamaIndex
讲解了LlamaIndex(原名为GPT Index),其是一个专为高效检索和增强大型语言模型(LLM)应用而设计的开源数据框架。从数据加载、文本切分与解析、索引与检索、生成回复、底层接口:Prompt、LLM 与 Embedding这几个方面展开讲解,最后基于 LlamaIndex 实现一个功能较完整的 RAG 系统。原创 2025-04-17 17:52:50 · 465 阅读 · 0 评论 -
AI全栈工程师——6 Assistants API
本文以阿里云的通义千问 Assistant API 作为讲解核心,同时附上 OpenAI 的 Assistant API 参考代码和部分功能的 LangChain + DashScope 实现代码。涵盖创建一个Assistant、Thread、Run、流式输出、工具调用(知识检索增强、函数调用、代码解释器)等Assistant 功能。原创 2025-04-16 10:56:03 · 63 阅读 · 0 评论 -
AI全栈工程师——5 RAG Embeddings
介绍RAG,RAG 系统的基本搭建流程(基于关键字检索的RAG),向量检索(向量间相似度计算、向量数据库、基于向量检索的 RAG),实战 RAG 系统的进阶知识(文本分割的粒度、检索后排序、混合检索、RAG-Fusion),向量模型的本地加载与运行,浅谈 GraphRAG。原创 2025-04-14 21:19:18 · 91 阅读 · 0 评论 -
AI全栈工程师——4 从AI编程认识AI
先介绍能使用 AI 的提效场景,再引用CSDN创始人蒋涛的一条博客来介绍接下来编程的发展趋势,然后从AI编程不只是提效、AI编程的适用条件、AI编程其实就是提示词工程、工具和技巧(讲解了包括GitHub Copilot、Cursor在内的AI编程IDE)、典型使用场景、AI编程的未来发展、AI编程的效能来讲解如何使用AI辅助编程。原创 2025-04-12 08:15:11 · 592 阅读 · 0 评论 -
AI全栈工程师——3 Function Calling
本文首先讲解了接口,其中引出了自然语言连接一切(Natural Language Interface)的概念;接着讲解为什么要大模型连接外部世界?引出Plugins、Actions和Function Calling;然后介绍了Plugins;再通过四个案例讲解了Function Calling;最后浅聊了一下Function Calling的未来发展。原创 2025-04-11 19:15:06 · 874 阅读 · 0 评论 -
AI全栈工程师——2 Prompt Engineering,提示工程
本文先对提示词工程做了介绍,然后讲解了Prompt的构成,并以一个实际业务场景讲解了Prompt。还讲解了思维链CoT、自洽性Self-Consistency、自一致性采样Self-Consistency Sampling、思维树ToT,最后还讲解了如何防范Prompt攻击。原创 2025-04-11 14:39:02 · 1306 阅读 · 0 评论 -
AI全栈工程师——1 AI简介
本文对AI做了简介,讲解了大模型能做哪些事情(怎么解决业务问题?怎么定义遇到的业务问题?大模型能否解决这些业务问题?),大模型是怎么生成结果的,大模型的落地情况,大模型应用的产品和技术架构、最后讲解如何选择基础模型。原创 2025-04-11 14:31:28 · 664 阅读 · 0 评论