11 微服务保护
11.1 服务保护方案
11.1.1 问题引出
-
在微服务远程调用的过程中,还存在几个问题需要解决:
-
业务健壮性问题:
- 例如在之前的查询购物车列表业务中,购物车服务需要查询最新的商品信息,与购物车数据做对比,提醒用户;
- 大家设想一下,如果商品服务查询时发生故障,查询购物车列表在调用商品服务时,是不是也会异常?从而导致购物车查询失败;
- 但从业务角度来说,为了提升用户体验,即便是商品查询失败,购物车列表也应该正确展示出来,哪怕是不包含最新的商品信息;
-
级联失败问题:
- 还是查询购物车的业务,假如商品服务业务并发较高,占用过多Tomcat连接。可能会导致商品服务的所有接口响应时间增加,延迟变高,甚至是长时间阻塞直至查询失败;
- 此时查询购物车业务需要查询并等待商品查询结果,从而导致查询购物车列表业务的响应时间也变长,甚至也阻塞直至无法访问。而此时如果查询购物车的请求较多,可能导致购物车服务的Tomcat连接占用较多,所有接口的响应时间都会增加,整个服务性能很差, 甚至不可用;
-
依次类推,整个微服务群中与购物车服务、商品服务等有调用关系的服务可能都会出现问题,最终导致整个集群不可用;
-
这就是级联失败问题,或者叫雪崩问题;
-
-
微服务保护的方案有很多,比如:
- 请求限流
- 线程隔离
- 服务熔断
-
这些方案或多或少都会导致服务的体验上略有下降,比如:
- 请求限流,降低了并发上限;
- 线程隔离,降低了可用资源数量;
- 服务熔断,降低了服务的完整度,部分服务变的不可用或弱可用;
-
因此这些方案都属于服务降级的方案。但通过这些方案,服务的健壮性得到了提升。
11.1.2 请求限流
-
服务故障最重要原因,就是并发太高!解决了这个问题,就能避免大部分故障。当然,接口的并发不是一直很高,而是突发的。因此请求限流,就是限制或控制接口访问的并发流量,避免服务因流量激增而出现故障;
-
请求限流往往会有一个限流器,数量高低起伏的并发请求曲线,经过限流器就变的非常平稳。这就像是水电站的大坝,起到蓄水的作用,可以通过开关控制水流出的大小,让下游水流始终维持在一个平稳的量。
11.1.3 线程隔离
-
当一个业务接口响应时间长,而且并发高时,就可能耗尽服务器的线程资源,导致服务内的其它接口受到影响。所以必须把这种影响降低,或者缩减影响的范围。线程隔离正是解决这个问题的好办法;
-
线程隔离的思想来自轮船的舱壁模式:轮船的船舱会被隔板分割为N个相互隔离的密闭舱,假如轮船触礁进水,只有损坏的部分密闭舱会进水,而其他舱由于相互隔离,并不会进水。这样就把进水控制在部分船体,避免了整个船舱进水而沉没。
-
为了避免某个接口故障或压力过大导致整个服务不可用,可以限定每个接口可以使用的资源范围,也就是将其“隔离”起来;
- 如图所示,给查询购物车业务限定可用线程数量上限为20,比其它业务稍多一点;
- 这样即便查询购物车的请求因为查询商品服务而出现故障,也不会导致服务器的线程资源被耗尽,不会影响到其它接口:
11.1.4 服务熔断
-
线程隔离虽然避免了雪崩问题,但故障服务(商品服务)依然会拖慢购物车服务(服务调用方)的接口响应速度。而且商品查询的故障依然会导致查询购物车功能出现故障,购物车业务也变的不可用;
-
所以,要做两件事情:
- 编写服务降级逻辑:就是服务调用失败后的处理逻辑,根据业务场景,可以抛出异常,也可以返回友好提示或默认数据;
- 异常统计和熔断:统计服务提供方的异常比例,当比例过高表明该接口会影响到其它服务,应该拒绝调用该接口,而是直接走降级逻辑。
11.2 Sentinel
11.2.1 介绍和安装
-
Sentinel是阿里巴巴开源的一款服务保护框架,目前已经加入SpringCloudAlibaba中。官方网站:home | Sentinel (sentinelguard.io);
-
Sentinel 的使用可以分为两个部分:
- 核心库(Jar包):不依赖任何框架/库,能够运行于 Java 8 及以上的版本的运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。在项目中引入依赖即可实现服务限流、隔离、熔断等功能;
- 控制台(Dashboard):Dashboard 主要负责管理推送规则、监控、管理机器信息等;
-
搭建Sentinel的控制台:
-
下载jar包:
-
此处的版本使用的是1.8.6;
-
运行:
-
将jar包放在任意非中文、不包含特殊字符的目录下,重命名为
sentinel-dashboard.jar
: -
然后运行如下命令启动控制台:
java -Dserver.port=8090 -Dcsp.sentinel.dashboard.server=localhost:8090 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard.jar
-
其它启动时可配置参数可参考官方文档:启动配置项 · alibaba/Sentinel Wiki · GitHub;
-
-
访问
-
访问http://localhost:8090页面,就可以看到sentinel的控制台了:
-
需要输入账号和密码,默认都是:sentinel。登录后,即可看到控制台,默认会监控sentinel-dashboard服务本身:
-
-
11.2.2 微服务整合
-
在
cart-service
模块中整合sentinel,连接sentinel-dashboard
控制台,步骤如下:-
引入sentinel依赖
<!--sentinel--> <dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId> </dependency>
-
修改application.yaml文件,添加下面内容:
spring: cloud: sentinel: transport: dashboard: localhost:8090
-
重启
cart-service
,然后访问查询购物车接口,sentinel的客户端就会将服务访问的信息提交到sentinel-dashboard
控制台。并展示出统计信息:-
点击簇点链路菜单,会看到下面的页面:
- 所谓簇点链路,就是单机调用链路,是一次请求进入服务后经过的每一个被
Sentinel
监控的资源; - 默认情况下,
Sentinel
会监控SpringMVC
的每一个Endpoint
(接口); - 因此,我们看到
/carts
这个接口路径就是其中一个簇点,我们可以对其进行限流、熔断、隔离等保护措施;
- 所谓簇点链路,就是单机调用链路,是一次请求进入服务后经过的每一个被
-
不过,需要注意的是,我们的SpringMVC接口是按照Restful风格设计,因此购物车的查询、删除、修改等接口全部都是
/carts
路径: -
默认情况下Sentinel会把路径作为簇点资源的名称,无法区分路径相同但请求方式不同的接口,查询、删除、修改等都被识别为一个簇点资源,这显然是不合适的;
-
-
所以我们可以选择打开Sentinel的请求方式前缀,把
请求方式 + 请求路径
作为簇点资源名:-
首先,在
cart-service
的application.yml
中添加下面的配置:spring: cloud: sentinel: transport: dashboard: localhost:8090 http-method-specify: true # 开启请求方式前缀
-
然后,重启服务,通过页面访问购物车的相关接口,可以看到sentinel控制台的簇点链路发生了变化:
-
-
11.3 请求限流
-
在簇点链路后面点击流控按钮,即可对其做限流配置:
-
在弹出的菜单中这样填写:
- QPS:每秒处理请求数;
- 这样就把查询购物车列表这个簇点资源的流量限制在了每秒 6 个,也就是最大QPS为 6 ;
-
利用Jemeter做限流测试,我们每秒发出 10 个请求:
-
最终监控结果如下:
-
可以看出
GET:/carts
这个接口的通过QPS稳定在 6 附近,而拒绝的QPS在 4 附近,符合我们的预期。
11.4 线程隔离
11.4.1 问题引出
-
限流可以降低服务器压力,尽量减少因并发流量引起的服务故障的概率,但并不能完全避免服务故障。一旦某个服务出现故障,我们必须隔离对这个服务的调用,避免发生雪崩;
-
比如,查询购物车的时候需要查询商品,为了避免因商品服务出现故障导致购物车服务级联失败,我们可以把购物车业务中查询商品的部分隔离起来,限制可用的线程资源:
-
这样,即便商品服务出现故障,最多导致查询购物车业务故障,并且可用的线程资源也被限定在一定范围,不会导致整个购物车服务崩溃;
-
所以,要对查询商品的FeignClient接口做线程隔离。
11.4.2 OpenFeign整合Sentinel
-
修改
cart-service
模块的application.yml
文件,开启Feign的sentinel功能:feign: sentinel: enabled: true # 开启feign对sentinel的支持
-
需要注意的是,默认情况下SpringBoot项目的tomcat最大线程数是200,允许的最大连接是8492,单机测试很难打满。所以我们需要配置一下
cart-service
模块的application.yml文件,修改Tomcat连接:server: port: 8082 tomcat: threads: max: 50 # 允许的最大线程数 accept-count: 50 # 最大排队等待数量 max-connections: 100 # 允许的最大连接
-
然后重启cart-service服务,查询购物车列表,可以看到查询商品的FeignClient自动变成了一个簇点资源:
11.4.3 配置线程隔离
-
点击查询商品的FeignClient对应的簇点资源后面的流控按钮:
-
在弹出的表单中填写下面内容:
-
注意,这里勾选的是并发线程数限制,也就是说这个查询功能最多使用 5 个线程,而不是 5 QPS。如果查询商品的接口每秒处理 2 个请求,则 5 个线程的实际QPS在 10 左右,而超出的请求自然会被拒绝;
-
-
利用Jemeter测试,每秒发送100个请求:
-
最终测试结果如下:
- 进入查询购物车的请求每秒大概在100,而在查询商品时却只剩下每秒10左右,符合我们的预期;
-
此时如果我们通过页面访问购物车的其它接口,例如添加购物车、修改购物车商品数量,发现不受影响:
- 响应时间非常短,这就证明线程隔离起到了作用,尽管查询购物车这个接口并发很高,但是它能使用的线程资源被限制了,因此不会影响到其它接口。
11.5 服务熔断
11.5.1 问题引出
- 在上面,利用线程隔离对查询购物车业务进行隔离,保护了购物车服务的其它接口。由于查询商品的功能耗时较高(我们模拟了500毫秒延时),再加上线程隔离限定了线程数为 5,导致接口吞吐能力有限,最终QPS只有 10 左右。这就导致了几个问题:
- 第一,超出的QPS上限的请求就只能抛出异常,从而导致购物车的查询失败。但从业务角度来说,即便没有查询到最新的商品信息,购物车也应该展示给用户,用户体验更好。也就是给查询失败设置一个降级处理逻辑;
- 第二,由于查询商品的延迟较高(模拟的500ms),从而导致查询购物车的响应时间也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。对于商品服务这种不太健康的接口,我们应该直接停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。
11.5.2 编写降级逻辑
-
触发限流或熔断后的请求不一定要直接报错,也可以返回一些默认数据或者友好提示,用户体验会更好;
-
给FeignClient编写失败后的降级逻辑有两种方式:
- 方式一:FallbackClass,无法对远程调用的异常做处理;
- 方式二:FallbackFactory,可以对远程调用的异常做处理;
-
此处演示方式二的失败降级处理:
-
在
hm-api
模块中给ItemClient
定义降级处理类,实现FallbackFactory
:package com.hmall.api.client.fallback; import com.hmall.api.client.ItemClient; import com.hmall.api.domain.dto.ItemDTO; import com.hmall.api.domain.dto.OrderDetailDTO; import com.hmall.common.exception.BizIllegalException; import com.hmall.common.utils.CollUtils; import lombok.extern.slf4j.Slf4j; import org.springframework.cloud.openfeign.FallbackFactory; import java.util.Collection; import java.util.List; @Slf4j public class ItemClientFallback implements FallbackFactory<ItemClient> { @Override public ItemClient create(Throwable cause) { return new ItemClient() { @Override public List<ItemDTO> queryItemByIds(Collection<Long> ids) { log.error("远程调用ItemClient#queryItemByIds方法出现异常,参数:{}", ids, cause); // 查询购物车允许失败,查询失败,返回空集合 return CollUtils.emptyList(); } @Override public void deductStock(List<OrderDetailDTO> items) { // 库存扣减业务需要触发事务回滚,查询失败,抛出异常 throw new BizIllegalException(cause); } }; } }
-
在
hm-api
模块中的com.hmall.api.config.DefaultFeignConfig
类中将ItemClientFallback
注册为一个Bean
:@Bean public ItemClientFallback itemClientFallback() { return new ItemClientFallback(); }
-
在
hm-api
模块中的ItemClient
接口中使用ItemClientFallbackFactory
: -
重启后,再次测试,发现被限流的请求不再报错,走了降级逻辑:
-
但是未被限流的请求延时依然很高,导致最终的平局响应时间较长:
-
11.5.3 服务熔断
-
查询商品的RT(Real Time,实时)较高(模拟的500ms),从而导致查询购物车的RT也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差;
-
对于商品服务这种不太健康的接口,我们应该停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。当商品服务接口恢复正常后,再允许调用。这其实就是断路器的工作模式了;
-
Sentinel中的断路器不仅可以统计某个接口的慢请求比例,还可以统计异常请求比例。当这些比例超出阈值时,就会熔断该接口,即拦截访问该接口的一切请求,降级处理;当该接口恢复正常时,再放行对于该接口的请求;
-
断路器的工作状态切换有一个状态机来控制:
-
状态机包括三个状态:
- closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态;
- open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。open状态持续一段时间后会进入half-open状态;
- half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作;
- 请求成功:则切换到closed状态;
- 请求失败:则切换到open状态;
-
可以在控制台通过点击簇点后的**
熔断
**按钮来配置熔断策略: -
在弹出的表格中这样填写:
- 这种是按照慢调用比例来做熔断,上述配置的含义是:
- RT超过200毫秒的请求调用就是慢调用;
- 统计最近1000ms内的最少5次请求,如果慢调用比例不低于0.5,则触发熔断;
- 熔断持续时长20s;
- 这种是按照慢调用比例来做熔断,上述配置的含义是:
-
配置完成后,再次利用Jemeter测试,可以发现:
-
在一开始一段时间是允许访问的,后来触发熔断后,查询商品服务的接口通过QPS直接为0,所有请求都被熔断了。而查询购物车的本身并没有受到影响。此时整个购物车查询服务的平均RT影响不大: