MP+Docker+SpringCloud+MQ+ES——11 微服务保护

11 微服务保护

11.1 服务保护方案

11.1.1 问题引出

  • 在微服务远程调用的过程中,还存在几个问题需要解决:

    • 业务健壮性问题:

      • 例如在之前的查询购物车列表业务中,购物车服务需要查询最新的商品信息,与购物车数据做对比,提醒用户;
      • 大家设想一下,如果商品服务查询时发生故障,查询购物车列表在调用商品服务时,是不是也会异常?从而导致购物车查询失败;
      • 但从业务角度来说,为了提升用户体验,即便是商品查询失败,购物车列表也应该正确展示出来,哪怕是不包含最新的商品信息;
    • 级联失败问题:

      • 还是查询购物车的业务,假如商品服务业务并发较高,占用过多Tomcat连接。可能会导致商品服务的所有接口响应时间增加,延迟变高,甚至是长时间阻塞直至查询失败;
      • 此时查询购物车业务需要查询并等待商品查询结果,从而导致查询购物车列表业务的响应时间也变长,甚至也阻塞直至无法访问。而此时如果查询购物车的请求较多,可能导致购物车服务的Tomcat连接占用较多,所有接口的响应时间都会增加,整个服务性能很差, 甚至不可用;

      在这里插入图片描述

      • 依次类推,整个微服务群中与购物车服务、商品服务等有调用关系的服务可能都会出现问题,最终导致整个集群不可用;

        在这里插入图片描述

      • 这就是级联失败问题,或者叫雪崩问题;

  • 微服务保护的方案有很多,比如:

    • 请求限流
    • 线程隔离
    • 服务熔断
  • 这些方案或多或少都会导致服务的体验上略有下降,比如:

    • 请求限流,降低了并发上限;
    • 线程隔离,降低了可用资源数量;
    • 服务熔断,降低了服务的完整度,部分服务变的不可用或弱可用;
  • 因此这些方案都属于服务降级的方案。但通过这些方案,服务的健壮性得到了提升。

11.1.2 请求限流

  • 服务故障最重要原因,就是并发太高!解决了这个问题,就能避免大部分故障。当然,接口的并发不是一直很高,而是突发的。因此请求限流,就是限制或控制接口访问的并发流量,避免服务因流量激增而出现故障;

  • 请求限流往往会有一个限流器,数量高低起伏的并发请求曲线,经过限流器就变的非常平稳。这就像是水电站的大坝,起到蓄水的作用,可以通过开关控制水流出的大小,让下游水流始终维持在一个平稳的量。

    在这里插入图片描述

11.1.3 线程隔离

  • 当一个业务接口响应时间长,而且并发高时,就可能耗尽服务器的线程资源,导致服务内的其它接口受到影响。所以必须把这种影响降低,或者缩减影响的范围。线程隔离正是解决这个问题的好办法;

  • 线程隔离的思想来自轮船的舱壁模式:轮船的船舱会被隔板分割为N个相互隔离的密闭舱,假如轮船触礁进水,只有损坏的部分密闭舱会进水,而其他舱由于相互隔离,并不会进水。这样就把进水控制在部分船体,避免了整个船舱进水而沉没。

    在这里插入图片描述

  • 为了避免某个接口故障或压力过大导致整个服务不可用,可以限定每个接口可以使用的资源范围,也就是将其“隔离”起来;

    • 如图所示,给查询购物车业务限定可用线程数量上限为20,比其它业务稍多一点;
    • 这样即便查询购物车的请求因为查询商品服务而出现故障,也不会导致服务器的线程资源被耗尽,不会影响到其它接口:

    在这里插入图片描述

11.1.4 服务熔断

  • 线程隔离虽然避免了雪崩问题,但故障服务(商品服务)依然会拖慢购物车服务(服务调用方)的接口响应速度。而且商品查询的故障依然会导致查询购物车功能出现故障,购物车业务也变的不可用;

  • 所以,要做两件事情:

    • 编写服务降级逻辑:就是服务调用失败后的处理逻辑,根据业务场景,可以抛出异常,也可以返回友好提示或默认数据;
    • 异常统计和熔断:统计服务提供方的异常比例,当比例过高表明该接口会影响到其它服务,应该拒绝调用该接口,而是直接走降级逻辑。

    在这里插入图片描述

11.2 Sentinel

11.2.1 介绍和安装

  • Sentinel是阿里巴巴开源的一款服务保护框架,目前已经加入SpringCloudAlibaba中。官方网站:home | Sentinel (sentinelguard.io)

  • Sentinel 的使用可以分为两个部分:

    • 核心库(Jar包):不依赖任何框架/库,能够运行于 Java 8 及以上的版本的运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。在项目中引入依赖即可实现服务限流、隔离、熔断等功能;
    • 控制台(Dashboard):Dashboard 主要负责管理推送规则、监控、管理机器信息等;
  • 搭建Sentinel的控制台:

    1. 下载jar包:

    2. 运行:

      • 将jar包放在任意非中文、不包含特殊字符的目录下,重命名为sentinel-dashboard.jar

        在这里插入图片描述

      • 然后运行如下命令启动控制台:

        java -Dserver.port=8090 -Dcsp.sentinel.dashboard.server=localhost:8090 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard.jar
        

        在这里插入图片描述

      • 其它启动时可配置参数可参考官方文档:启动配置项 · alibaba/Sentinel Wiki · GitHub

    3. 访问

      • 访问http://localhost:8090页面,就可以看到sentinel的控制台了:

        在这里插入图片描述

      • 需要输入账号和密码,默认都是:sentinel。登录后,即可看到控制台,默认会监控sentinel-dashboard服务本身:

        在这里插入图片描述

11.2.2 微服务整合

  • cart-service模块中整合sentinel,连接sentinel-dashboard控制台,步骤如下:

    1. 引入sentinel依赖

      <!--sentinel-->
      <dependency>
          <groupId>com.alibaba.cloud</groupId> 
          <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
      </dependency>
      
    2. 修改application.yaml文件,添加下面内容:

      spring:
        cloud: 
          sentinel:
            transport:
              dashboard: localhost:8090
      
    3. 重启cart-service,然后访问查询购物车接口,sentinel的客户端就会将服务访问的信息提交到sentinel-dashboard控制台。并展示出统计信息:

      在这里插入图片描述

      • 点击簇点链路菜单,会看到下面的页面:

        • 所谓簇点链路,就是单机调用链路,是一次请求进入服务后经过的每一个被Sentinel监控的资源;
        • 默认情况下,Sentinel会监控SpringMVC的每一个Endpoint(接口);
        • 因此,我们看到/carts这个接口路径就是其中一个簇点,我们可以对其进行限流、熔断、隔离等保护措施;

        在这里插入图片描述

      • 不过,需要注意的是,我们的SpringMVC接口是按照Restful风格设计,因此购物车的查询、删除、修改等接口全部都是/carts路径:

        在这里插入图片描述

      • 默认情况下Sentinel会把路径作为簇点资源的名称,无法区分路径相同但请求方式不同的接口,查询、删除、修改等都被识别为一个簇点资源,这显然是不合适的;

    4. 所以我们可以选择打开Sentinel的请求方式前缀,把请求方式 + 请求路径作为簇点资源名:

      • 首先,在cart-serviceapplication.yml中添加下面的配置:

        spring:
          cloud:
            sentinel:
              transport:
                dashboard: localhost:8090
              http-method-specify: true # 开启请求方式前缀
        
      • 然后,重启服务,通过页面访问购物车的相关接口,可以看到sentinel控制台的簇点链路发生了变化:

        在这里插入图片描述

11.3 请求限流

  • 在簇点链路后面点击流控按钮,即可对其做限流配置:

    在这里插入图片描述

  • 在弹出的菜单中这样填写:

    • QPS:每秒处理请求数;
    • 这样就把查询购物车列表这个簇点资源的流量限制在了每秒 6 个,也就是最大QPS为 6 ;

    在这里插入图片描述

  • 利用Jemeter做限流测试,我们每秒发出 10 个请求:

    在这里插入图片描述

  • 最终监控结果如下:

    在这里插入图片描述

  • 可以看出GET:/carts这个接口的通过QPS稳定在 6 附近,而拒绝的QPS在 4 附近,符合我们的预期。

11.4 线程隔离

11.4.1 问题引出

  • 限流可以降低服务器压力,尽量减少因并发流量引起的服务故障的概率,但并不能完全避免服务故障。一旦某个服务出现故障,我们必须隔离对这个服务的调用,避免发生雪崩;

  • 比如,查询购物车的时候需要查询商品,为了避免因商品服务出现故障导致购物车服务级联失败,我们可以把购物车业务中查询商品的部分隔离起来,限制可用的线程资源:

    在这里插入图片描述

  • 这样,即便商品服务出现故障,最多导致查询购物车业务故障,并且可用的线程资源也被限定在一定范围,不会导致整个购物车服务崩溃;

  • 所以,要对查询商品的FeignClient接口做线程隔离。

11.4.2 OpenFeign整合Sentinel

  • 修改cart-service模块的application.yml文件,开启Feign的sentinel功能:

    feign:
      sentinel:
        enabled: true # 开启feign对sentinel的支持
    
  • 需要注意的是,默认情况下SpringBoot项目的tomcat最大线程数是200,允许的最大连接是8492,单机测试很难打满。所以我们需要配置一下cart-service模块的application.yml文件,修改Tomcat连接:

    server:
      port: 8082
      tomcat:
        threads:
          max: 50 # 允许的最大线程数
        accept-count: 50 # 最大排队等待数量
        max-connections: 100 # 允许的最大连接
    
  • 然后重启cart-service服务,查询购物车列表,可以看到查询商品的FeignClient自动变成了一个簇点资源:

    在这里插入图片描述

11.4.3 配置线程隔离

  • 点击查询商品的FeignClient对应的簇点资源后面的流控按钮:

    在这里插入图片描述

  • 在弹出的表单中填写下面内容:

    在这里插入图片描述

    • 注意,这里勾选的是并发线程数限制,也就是说这个查询功能最多使用 5 个线程,而不是 5 QPS。如果查询商品的接口每秒处理 2 个请求,则 5 个线程的实际QPS在 10 左右,而超出的请求自然会被拒绝;

      在这里插入图片描述

  • 利用Jemeter测试,每秒发送100个请求:

    在这里插入图片描述

  • 最终测试结果如下:

    在这里插入图片描述

    • 进入查询购物车的请求每秒大概在100,而在查询商品时却只剩下每秒10左右,符合我们的预期;
  • 此时如果我们通过页面访问购物车的其它接口,例如添加购物车、修改购物车商品数量,发现不受影响:

    在这里插入图片描述

    • 响应时间非常短,这就证明线程隔离起到了作用,尽管查询购物车这个接口并发很高,但是它能使用的线程资源被限制了,因此不会影响到其它接口。

11.5 服务熔断

11.5.1 问题引出

  • 在上面,利用线程隔离对查询购物车业务进行隔离,保护了购物车服务的其它接口。由于查询商品的功能耗时较高(我们模拟了500毫秒延时),再加上线程隔离限定了线程数为 5,导致接口吞吐能力有限,最终QPS只有 10 左右。这就导致了几个问题:
    • 第一,超出的QPS上限的请求就只能抛出异常,从而导致购物车的查询失败。但从业务角度来说,即便没有查询到最新的商品信息,购物车也应该展示给用户,用户体验更好。也就是给查询失败设置一个降级处理逻辑;
    • 第二,由于查询商品的延迟较高(模拟的500ms),从而导致查询购物车的响应时间也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。对于商品服务这种不太健康的接口,我们应该直接停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断

11.5.2 编写降级逻辑

  • 触发限流或熔断后的请求不一定要直接报错,也可以返回一些默认数据或者友好提示,用户体验会更好;

  • 给FeignClient编写失败后的降级逻辑有两种方式:

    • 方式一:FallbackClass,无法对远程调用的异常做处理;
    • 方式二:FallbackFactory,可以对远程调用的异常做处理;
  • 此处演示方式二的失败降级处理:

    1. hm-api模块中给ItemClient定义降级处理类,实现FallbackFactory

      在这里插入图片描述

      package com.hmall.api.client.fallback;
      
      import com.hmall.api.client.ItemClient;
      import com.hmall.api.domain.dto.ItemDTO;
      import com.hmall.api.domain.dto.OrderDetailDTO;
      import com.hmall.common.exception.BizIllegalException;
      import com.hmall.common.utils.CollUtils;
      import lombok.extern.slf4j.Slf4j;
      import org.springframework.cloud.openfeign.FallbackFactory;
      
      import java.util.Collection;
      import java.util.List;
      
      @Slf4j
      public class ItemClientFallback implements FallbackFactory<ItemClient> {
          @Override
          public ItemClient create(Throwable cause) {
              return new ItemClient() {
                  @Override
                  public List<ItemDTO> queryItemByIds(Collection<Long> ids) {
                      log.error("远程调用ItemClient#queryItemByIds方法出现异常,参数:{}", ids, cause);
                      // 查询购物车允许失败,查询失败,返回空集合
                      return CollUtils.emptyList();
                  }
      
                  @Override
                  public void deductStock(List<OrderDetailDTO> items) {
                      // 库存扣减业务需要触发事务回滚,查询失败,抛出异常
                      throw new BizIllegalException(cause);
                  }
              };
          }
      }
      
    2. hm-api模块中的com.hmall.api.config.DefaultFeignConfig类中将ItemClientFallback注册为一个Bean

      在这里插入图片描述

      @Bean
      public ItemClientFallback itemClientFallback() {
          return new ItemClientFallback();
      }
      
    3. hm-api模块中的ItemClient接口中使用ItemClientFallbackFactory

      在这里插入图片描述

    4. 重启后,再次测试,发现被限流的请求不再报错,走了降级逻辑:

      在这里插入图片描述

    5. 但是未被限流的请求延时依然很高,导致最终的平局响应时间较长:

      在这里插入图片描述

11.5.3 服务熔断

  • 查询商品的RT(Real Time,实时)较高(模拟的500ms),从而导致查询购物车的RT也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差;

  • 对于商品服务这种不太健康的接口,我们应该停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。当商品服务接口恢复正常后,再允许调用。这其实就是断路器的工作模式了;

  • Sentinel中的断路器不仅可以统计某个接口的慢请求比例,还可以统计异常请求比例。当这些比例超出阈值时,就会熔断该接口,即拦截访问该接口的一切请求,降级处理;当该接口恢复正常时,再放行对于该接口的请求;

  • 断路器的工作状态切换有一个状态机来控制:

    在这里插入图片描述

  • 状态机包括三个状态:

    • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态;
    • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。open状态持续一段时间后会进入half-open状态;
    • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作;
      • 请求成功:则切换到closed状态;
      • 请求失败:则切换到open状态;
  • 可以在控制台通过点击簇点后的**熔断**按钮来配置熔断策略:

    在这里插入图片描述

  • 在弹出的表格中这样填写:

    在这里插入图片描述

    • 这种是按照慢调用比例来做熔断,上述配置的含义是:
      • RT超过200毫秒的请求调用就是慢调用;
      • 统计最近1000ms内的最少5次请求,如果慢调用比例不低于0.5,则触发熔断;
      • 熔断持续时长20s;
  • 配置完成后,再次利用Jemeter测试,可以发现:

    在这里插入图片描述

  • 在一开始一段时间是允许访问的,后来触发熔断后,查询商品服务的接口通过QPS直接为0,所有请求都被熔断了。而查询购物车的本身并没有受到影响。此时整个购物车查询服务的平均RT影响不大:

    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木木慕慕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值