- 博客(11)
- 资源 (1)
- 收藏
- 关注
原创 ubuntu安装rdkit时报错找不到libXrender.so.1解决方法
【代码】ubuntu安装rdkit时报错找不到libXrender.so.1解决方法。
2023-05-30 10:54:22 822 1
原创 激活函数与随机正则
不管其他领域的鄙视链,在激活函数领域,大家公式的鄙视链应该是:Elus > Relu > Sigmoid ,这些激活函数都有自身的缺陷, sigmoid容易饱和,Elus与Relu缺乏随机因素。在神经网络的建模过程中,模型很重要的性质就是非线性,同时为了模型泛化能力,需要加入随机正则,例如dropout(随机置一些输出为0,其实也是一种变相的随机非线性激活), 而随机正则与非线性激活是分开的两个事情, 而其实模型的输入是由非线性激活与随机正则两者共同决定的。GELUs正是在激活中引入了随机正
2022-02-15 15:52:53 498
原创 机器学习方法总结
机器学习方法总结LR(逻辑回归)LR目标是寻找一个映射,将Z转换成0或1。可以使用阶跃函数,但是阶跃函数性质不好,不可导求解过于复杂,这里选用Sigmoid函数。求得预测值为y的概率表达式为:假设样本独立且同分布,最大似然估计:那么,LR的损失函数是损失函数表征预测值与真实值之间的差异程度,P(Y|X)为样本为Y的概率,数值越大说明预测值与真实值越接近即损失函数应该越小,当P(Y|X)越大的,-logP(Y|X)越小,刚好符合损失函数的定义。在此损失函数可以取为最大似然估计函数的相反数
2022-02-10 11:20:58 1228
原创 id embeding和属性特征embedding
推荐算法中各方法优缺点基于id的嵌入表示与基于属性特征的嵌入表示基于id的嵌入表示为每个用户单独假设了一个输入id到embedding的映射关系,基于属性特征的表示方法从输入属性特征到embedding的映射是共享所有用户,可能属性特征相同的用户有完全不一样的喜好,儿基于属性特征的embedding却是一样的。id embedding只能处理训练时见过的用户,无法对新用户给出预测,只能做transductive learning(训练集和测试集必须共享同一部分用户)属性embedding可以灵活处理
2021-12-31 15:45:33 2109
原创 scipy.sparse.csr_matrix
scipy.sparse.csr_matrixindptr = np.array([0, 2, 3, 6])indices = np.array([0, 2, 2, 0, 1, 2])data = np.array([1, 2, 3, 4, 5, 6])csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()输出:array([[1, 0, 2], [0, 0, 3], [4, 5, 6]])csr中...
2020-12-02 20:48:51 324
原创 训练GAN的提升方法
训练GAN的提升方法1.GAN模型GAN是2014年由Goodfellow提出的,借鉴了博弈论中零和博弈的思想。模型由两部分组成,一部分是生成器模型,一部分是判别器模型,两者进行博弈。生成器生成尽量与样本相似的数据,判别器尽自己所能去分辨是生成器生成的数据,还是样本数据。两者进行博弈,最终达到博弈中的纳什均衡点。在模型中使用的梯度下降法来最小化两者的成本是有可能无法达到纳什均衡的,可能无法使算法收敛,于是论文提出了以下方法2.特征匹配特征匹配为了解决GANs的不稳定性,防止生成模型的过拟合。特征匹配
2020-05-19 22:31:41 336
原创 Linux内核初探之一:内核简介
Linux内核初探之一:内核空间,系统调用,中断机制,单内核与微内核,Linux和Unix之间的比较,Linux的开发论坛。
2019-11-25 19:36:12 155
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人