Graphormer代码解读-spatial pos

self.spatial_pos_encoder = nn.Embedding(num_spatial, num_heads, padding_idx=0)
# spatial pos
# [n_graph, n_node, n_node, n_head] -> [n_graph, n_head, n_node, n_node]     
 spatial_pos_bias = self.spatial_pos_encoder(spatial_pos).permute(0, 3, 1, 2)   
 graph_attn_bias[:, :, 1:, 1:] = graph_attn_bias[:, :, 1:, 1:] + spatial_pos_bias     

spatial_pos为节点到每个节点的跳数,数据原始维度为(graph,node,node)
nn.Embedding会将向量扩充一维,将跳数从one-hot到向量化

抱歉,作为AI语言模型,我无法编写代码。但是,我可以解释Spectral-Spatial Convolution的原理和应用。 Spectral-Spatial Convolution是一种常用于图像和遥感图像处理的卷积神经网络(CNN)层。它结合了空间信息和频谱信息,将空间域和频域信息相互作用,从而可以更有效地提取图像特征。 在Spectral-Spatial Convolution中,每个卷积核包含两部分:空间卷积核和频谱卷积核。对于每个像素,空间卷积核在空间上滑动,频谱卷积核在频谱上滑动,两者在空间域和频域上的输出相互作用,得到最终的卷积结果。 以下是一个示例代码,展示了如何在PyTorch中实现Spectral-Spatial Convolution层: ``` import torch import torch.nn as nn import torch.nn.functional as F class SpectralSpatialConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super(SpectralSpatialConv, self).__init__() self.spatial_conv = nn.Conv2d(in_channels, out_channels, kernel_size) self.fft = torch.fft.fftn self.ifft = torch.fft.ifftn self.kernel_size = kernel_size self.out_channels = out_channels self.in_channels = in_channels self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size, kernel_size)) self.reset_parameters() def reset_parameters(self): nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, x): # Perform spatial convolution spatial_output = self.spatial_conv(x) # Perform spectral convolution fft_input = self.fft(x, dim=[2,3]) fft_kernel = self.fft(self.weight, dim=[2,3]) fft_output = torch.matmul(fft_input, fft_kernel) spectral_output = self.ifft(fft_output, dim=[2,3]).real # Combine spatial and spectral outputs output = spatial_output + spectral_output return output ``` 在这个例子中,我们定义了一个SpectralSpatialConv类,它继承了nn.Module类。在__init__方法中,我们定义了空间卷积和频谱卷积的卷积核,并初始化了权重。在forward方法中,我们首先进行空间卷积,然后进行频谱卷积,并将两个输出相加,得到最终的输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值