线段树模板

     线段树也是处理数组的一个很好的工具,当时和树状数组是同时学的。据说树状数组是可以更简单的解决一些线段树的问题,但是线段树的最经典二叉树结构,比起树状数组的结构简单的多。而且,同样的,处理到区间更新或者区间查询问题,线段树的处理可以说是相当的清晰透彻,而树状数组的要多加函数、多维护数组,只能说是很巧妙,精彩是精彩,用起来也难。

    这是做了个简单对比,仅是自己的理解。然后整理出来线段树的模板。是以维护区间最值为例的,单点和区间操作只是小部分的改动,本质上一样的。

单点更新区间查询

#include<cstring>
#include<stdio.h>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long LL;
const int MAX=131100;
struct Tree
{
    int l, r;
    int minn, maxx;
    int f;
}tree[4*MAX];
int a[MAX];
int Min, Max;
void build(int k, int left, int right)
{
    tree[k].l=left;
    tree[k].r=right;
    if(left==right)
    {
        tree[k].minn=tree[k].maxx=a[left];
        return ;
    }
    int mid=(left+right)/2;
    build(2*k, left, mid);
    build(2*k+1, mid+1, right);
    tree[k].minn=min(tree[2*k].minn, tree[2*k+1].minn);
    tree[k].maxx=max(tree[2*k].maxx, tree[2*k+1].maxx);
}
void updatePoint(int k, int pos, int v)
{
    if(tree[k].l==tree[k].r)
    {
        tree[k].minn=tree[k].maxx=v;
        return ;
    }
    int mid=(tree[k].l+tree[k].r)/2;
    if(pos<=mid)
        updatePoint(k*2, pos, v);
    else
        updatePoint(k*2+1, pos, v);
    tree[k].minn=min(tree[2*k].minn, tree[2*k+1].minn);
    tree[k].maxx=max(tree[2*k].maxx, tree[2*k+1].maxx);
}
void queryInterval(int k, int left, int right)
{
    if(tree[k].r<left || tree[k].l>right)
        return ;
    if(tree[k].l>=left && tree[k].r<=right)//再区间里面
    {
        Min=min(Min, tree[k].minn);
        Max=max(Max, tree[k].maxx);
        return ;
    }
    int mid=(tree[k].l+tree[k].r)/2;
    if(left<=mid)
        queryInterval(2*k, left, right);
    if(right>mid)
        queryInterval(2*k+1, left, right);
}
int main()
{
    int T, N, M;
    int ch, x, y;
    scanf("%d", &T);
    while(T--)
    {
        LL ans;
        scanf("%d", &N);
        N=pow(2, N);
        for(int i=1; i<=N; i++)
            scanf("%d", &a[i]);
        build(1, 1, N);
        scanf("%d", &M);
        for(int i=1; i<=M; i++)
        {
            scanf("%d%d%d", &ch, &x, &y);
            if(ch==1)
            {
                x++;    y++;
                Min=1e9;
                Max=-1e9;
                queryInterval(1, x, y);
                if(Max<=0)
                    ans=(LL)(Max*Max);
                if(Min>=0)
                    ans=(LL)(Min*Min);
                if(Min<0 && Max>0)
                    ans=(LL)(Min*Max);
                printf("%lld\n", ans);
            }
            else
            {
                x++;
                updatePoint(1, x, y);
            }
        }
    }
    return 0;
}

区间更新区间查询:

#include<stdio.h>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;

#define lson k*2, left, mid
#define rson k*2+1, mid+1, right
const int MAXN =131100;
int MAX[MAXN*4],MIN[MAXN*4];
void pushUpMax(int k)
{
	MAX[k]=max(MAX[k*2], MAX[k*2+1]);
}
void pushUpMin(int k)
{
	MIN[k]=min(MIN[k*2], MIN[k*2+1]);
}
void build(int k, int left, int right)
{
	if(left==right)
    {
		scanf("%d", &MAX[k]);
		MIN[k]=MAX[k];
		return ;
	}
	int mid=(left+right)/2;
	build(lson);
	build(rson);
	pushUpMax(k);
	pushUpMin(k);
}
void update(int k, int left, int right, int pos, int v)
{
	if(left==right)
    {
		MIN[k]=MAX[k]=v;
		return ;
	}
	int mid=(left+right)/2;
	if(pos<=mid)
        update(lson, pos, v);
	else
        update(rson, pos, v);
	pushUpMax(k);
	pushUpMin(k);
}
int queryMin(int k, int left, int right, int L, int R)
{
	if(left>=L && right<=R)
    {
		return MIN[k];
	}
	int mid=(left+right)/2;
	int ans=MAXN;
	if (L<=mid) ans=min(ans, queryMin(lson, L, R));
	if (R>mid) ans=min(ans, queryMin(rson, L, R));
	return ans;
}
int queryMax(int k, int left, int right, int L, int R)
{
	if(left>=L && right<=R)
    {
		return MAX[k];
	}
	int mid=(left+right)/2;
	int ans=MAXN;
	if (L<=mid) ans=max(ans, queryMax(lson, L, R));
	if (R>mid) ans=max(ans, queryMax(rson, L, R));
	return ans;
}
int main()
{
	int T, n, m;
    scanf("%d", &T);
    while(T--)
    {
        scanf("%d", &n);
        n=pow(2, n);
		build(1, 1, n);
        scanf("%d", &m);
		while(m--)
        {
			int a, b, ch;
			scanf("%d%d%d", &ch, &a, &b);
            a++;
			if(ch==1)
			{
			    b++;
			    ll t1=(ll)queryMin(1, 1, n, a, b);
			    ll t2=(ll)queryMax(1, 1, n, a, b);
			    ll ans;
			    if(t1<0 && t2>0)
                {
                    ans=t1*t2;
                    printf("%lld\n",ans);
                }
                else if(t1>0 || t2<0)
                {
                    ans=min(t2*t2, t1*t1);
                    printf("%lld\n",ans);
                }
			}
			else update(1, 1, n, a, b);
		}
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值