OpenCV图像旋转

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/konglongdanfo1/article/details/80350865

图像旋转是指图像按照某个位置转动一定角度的过程,旋转中图像仍保持这原始尺寸。图像旋转后图像的水平对称轴、垂直对称轴及中心坐标原点都可能会发生变换,因此需要对图像旋转中的坐标进行相应转换。

如下图:

矩阵转换图

假设图像逆时针旋转θ,则根据坐标转换可得旋转转换为:

(1){x=rcos(αθ)y=rsin(αθ)


r=x2+y2,sinα=yx2+y2,cosα=xx2+y2

带入(1)可得:
{x=xcosθ+ysinθy=xsinθ+ycosθ

即如下:
(2)[xy1] =[xy1] [cosθsinθ0sinθcosθ0001]

而旋转后的图片的灰度值等于原图中相应位置的灰度值如下:

f(x,y)=f(x,y)

同时我们要修正原点的位置,因为图像中的坐标原点在图像的左上角,经过旋转后图像的大小会有所变化,原点也需要修正。实现代码如下:

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <string>
#include <cmath>

using namespace cv;

Mat imgRotate(Mat matSrc, float angle, bool direction)
{
    float theta = angle * CV_PI / 180.0;
    int nRowsSrc = matSrc.rows;
    int nColsSrc = matSrc.cols;
    // 如果是顺时针旋转
    if (!direction)
        theta = 2 * CV_PI - theta;
    // 全部以逆时针旋转来计算
    // 逆时针旋转矩阵
    float matRotate[3][3]{
        {std::cos(theta), -std::sin(theta), 0},
        {std::sin(theta), std::cos(theta), 0 },
        {0, 0, 1}
    };
    float pt[3][2]{
        { 0, nRowsSrc },
        {nColsSrc, nRowsSrc},
        {nColsSrc, 0}
    };
    for (int i = 0; i < 3; i++)
    {
        float x = pt[i][0] * matRotate[0][0] + pt[i][1] * matRotate[1][0];
        float y = pt[i][0] * matRotate[0][1] + pt[i][1] * matRotate[1][1];
        pt[i][0] = x;
        pt[i][1] = y;
    }
    // 计算出旋转后图像的极值点和尺寸
    float fMin_x = min(min(min(pt[0][0], pt[1][0]), pt[2][0]), (float)0.0);
    float fMin_y = min(min(min(pt[0][1], pt[1][1]), pt[2][1]), (float)0.0);
    float fMax_x = max(max(max(pt[0][0], pt[1][0]), pt[2][0]), (float)0.0);
    float fMax_y = max(max(max(pt[0][1], pt[1][1]), pt[2][1]), (float)0.0);
    int nRows = cvRound(fMax_y - fMin_y + 0.5) + 1;
    int nCols = cvRound(fMax_x - fMin_x + 0.5) + 1;
    int nMin_x = cvRound(fMin_x + 0.5);
    int nMin_y = cvRound(fMin_y + 0.5);
    // 拷贝输出图像
    Mat matRet(nRows, nCols, matSrc.type(), Scalar(0));
    for (int j = 0; j < nRows; j++)
    {
        for (int i = 0; i < nCols; i++)
        {
            // 计算出输出图像在原图像中的对应点的坐标,然后复制该坐标的灰度值
            // 因为是逆时针转换,所以这里映射到原图像的时候可以看成是,输出图像
            // 到顺时针旋转到原图像的,而顺时针旋转矩阵刚好是逆时针旋转矩阵的转置
            // 同时还要考虑到要把旋转后的图像的左上角移动到坐标原点。
            int x = (i + nMin_x) * matRotate[0][0] + (j + nMin_y) * matRotate[0][1];
            int y = (i + nMin_x) * matRotate[1][0] + (j + nMin_y) * matRotate[1][1];
            if (x >= 0 && x < nColsSrc && y >= 0 && y < nRowsSrc)
            {
                matRet.at<Vec3b>(j, i) = matSrc.at<Vec3b>(y, x);
            }
        }
    }
    return matRet;
}

测试代码:

 int main()
 {
    std::string strPath = "D:\\MyDocuments\\My Pictures\\OpenCV\\";
    Mat matSrc = imread(strPath + "panda.jpg");
    if (matSrc.empty())
        return 1;
    float angle = 30;
    Mat matRet = imgRotate(matSrc, angle, true);
    imshow("src", matSrc);
    imshow("rotate", matRet);
    // 保存图像
    imwrite(strPath + "rotate_panda.jpg", matRet);

    waitKey();
    return 0;
 }


原图] 旋转后的图片

展开阅读全文

没有更多推荐了,返回首页