hdu 2352 Max Angle 极角排序

Max Angle

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 342    Accepted Submission(s): 128

Problem Description
Given many points in a plane, two players are playing an interesting game.

Player1 selects one point A as the vertex of an angle. Then player2 selects other two points B and C. A, B and C are different with each other. Now they get an angle B-A-C.

Player1 wants to make the angle as large as possible, while player2 wants to make the angle as small as possible.

Now you are supposed to find the max angle player1 can get, assuming play2 is c lever enough.
 

 

Input
There are many test cases. In each test case, the first line is an integer n (3 <= n <= 1001), which is the number of points on the plane. Then there are n lines. Each contains two floating number x, y, witch is the coordinate of one point. n <= 0 denotes the end of input.
 

 

Output
For each test case, output just one line, containing the max angle player1 can get in degree format. The result should be accurated up to 4 demicals.
 

 

Sample Input
  
  
3 0 0 2 0 0 5 -1
 

 

Sample Output
  
  
90.0000
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double pi=acos(-1+0.0);//0.0  important
struct node
{
    double x,y;
};
double dis(node a, node b)
{
     return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
int main()
{
    int n;
    node a[1100];
    double t[1100];
    while(scanf("%d",&n)==1&&n>0)
    {
        for(int i=0;i<n;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
        double cnt=0;
        for(int i=0;i<n;i++)//枚举顶点  important
        {
            int l=0;//极角排序,排的是各点到顶点的角度(相对x轴),在顶点下面的点要用2*pi-angle
            for(int j=0;j<n;j++)
            {
                if(i==j) continue;
                t[l++]=acos((a[j].x-a[i].x)/dis(a[i],a[j]));//用acos important
                if(a[j].y<a[i].y) t[l-1]=2*pi-t[l-1];//考虑在点下方 important
            }
            sort(t,t+l);
            double _min=2*pi-t[l-1]+t[0];//第一个点和最后一个点之间的夹角  important
            for(int i=1;i<l;i++) if(t[i]-t[i-1]<_min) _min=t[i]-t[i-1];//找相邻的夹角  important
            if(_min>cnt) cnt=_min;
        }
        printf("%.4lf/n",cnt*180/pi);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值