一个简单的随机森林机器学习代码

 并不需要外来数据集,只需要下载出相对应的库即可

# 导入所需库
from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report

# 加载数据集
wine_data = load_wine()
X = wine_data.data
Y = wine_data.target

# 划分数据集
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=42)

# 创建并训练模型
model = RandomForestClassifier(n_estimators=50)
model.fit(X_train, Y_train)

# 预测
Y_pred = model.predict(X_test)

# 评估模型
accuracy = accuracy_score(Y_test, Y_pred)
print("Accuracy:", accuracy)

report = classification_report(Y_test, Y_pred)
print("Classification Report:\n", report)

结果展示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值