0 前言
🔥这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。
为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是
🚩 毕业设计 Django股价预测可视化系统(源码+论文)
🥇学长这里给一个题目综合评分(每项满分5分)
难度系数:3分
工作量:3分
创新点:4分
🧿 项目分享:见文末!
1 项目运行效果
视频效果:
毕业设计 Django股价预测可视化系统
2 股价预测问题模型即预测流程
本文将股票趋势预测问题定义为回归问题,用连续N天的股票数据来预测未来几日短期的股票趋势,并用未来三日收益率来表示股票的涨跌趋势,由如下公式计算:
其中3daysPred代表三日收益率,closeprice(n)表示第n天的收盘价。三日收益率是我们期望得到的模型预测输出,其大于1表示未来三日股票价格的收盘价一定至少有一日大于前一日的收盘价,因而代表具备了短期投资价值。
股票预测系统主要是根据股票历史交易数据来建模的,在股市中未来几日的股价是由之前的多个交易日共同影响决定的,因此将连续N个交易日的股票数据作为一个时间窗口输入模型训练,预测之后三日的收益情况。通过滑动窗口的方式划分训练数据,如下图所示:
上图中timestep表示时间步长,即滑动窗口的大小,T表示T日的股票数据,包括所有的38个输入特征。T日的数据特征可以表示为XT={x1,x2,……xn},其中n=38。考虑每次输入timestep天长度的股票数据,那么输入向量实际上是一个二维矩阵用X={XT,XT+1,……XT+timestep-1}T来表示,目标向量Y为三日收益率。如果timestep的值为10,表示用前面十天的数据进行训练预测第11日开始的短期收益率。采用滑动窗口进行输入主要目的是让 LSTM 网络学习样本时序数据中的前后关联规律,通过滑动窗口构建训练样本数据的方法步骤如下表所示。
整体实现流程如下,首先对原始数据进行预处理,包括多类别特征体系的加入和数据的标准化处理等。
然后将处理好的数据集划分为训练集(前80%的股票数据)和测试集(后20%的股票数据),并选择相关的输入特征,建立模型训练。
最后将模型预测结果与真实测量结果进行比较,用预测准确率和定义的损失函数来评估模型性能。
根据评估结果进行不断调整,提高模型的泛化能力。
篇幅有限,更多详细设计见设计论文
3 最后
项目包含内容
完整详细设计论文
🧿 项目分享:见文末!