- 博客(574)
- 收藏
- 关注
原创 知识共享与草原犬优化算法应用【附代码】
在算法迭代前期,个体被赋予较大的搜索步长权重,使其能够以较大的跨度在搜索空间内进行全局探索,快速定位有潜力的候选区域;随着迭代次数的增加,权重逐渐减小,个体转向以较小步长进行精细化的局部搜索,提高解的精度。具体实现中,每个个体不仅学习全局最优个体的信息,还与其邻域内的其他个体进行信息交换,综合多个引导者的经验来确定自身的移动方向。规避策略模拟了草原犬在遇到危险时的逃跑行为,当检测到种群陷入停滞状态时,部分个体会执行随机方向的大步长移动,以此打破种群的聚集状态并重新激活搜索过程。
2026-01-09 10:47:28
810
原创 遗传算法TBM操作参数优化决策【附代码】
这些分析结果表明,TBM操作参数优化问题是一个典型的高维非线性优化问题,传统的经验公式和线性回归方法难以准确描述其复杂关系,需要采用机器学习和智能优化算法来建立更精确的预测和优化模型。状态判别函数综合考虑刀盘转速、推进油缸压力、皮带机运行状态等多个指标,能够自动识别并剔除停机、换刀、检修等非掘进状态的数据记录,确保后续建模数据的质量和代表性。优化结果表明,该模型能够在1.5秒内输出最优操作参数组合,满足工程现场实时决策的时效性要求,为操作人员提供了科学的参数设置建议,有效提升了TBM智能化掘进水平。
2026-01-09 10:46:53
569
原创 双引导机制灰狼优化算法应用【附代码】
稀疏点的选择基于种群的空间分布特征,首先计算每个个体在解空间中的拥挤度指标,拥挤度较低的个体处于种群的稀疏区域,代表了相对较少被探索的搜索方向。传统灰狼优化算法在狩猎过程中,个体的位置更新完全依赖于当前种群中前三个最优个体的引导,忽略了个体自身的历史搜索经验,这种单一的引导机制导致算法的搜索能力受到限制,在面对复杂多峰优化问题时容易陷入局部最优解。四个方向的权重系数根据各引导位置的适应度质量和距离远近进行动态调整,适应度较优的引导方向获得较大的权重,距离较近的引导方向也获得适当的权重增益。
2026-01-09 10:46:13
870
原创 边界元声学声振结构拓扑优化【附代码】
在形状优化的基础上,本研究进一步研究了在结构表面贴附吸声材料的拓扑优化问题,并发展了形状优化与拓扑优化相结合的联合优化算法。在联合优化框架中,非均匀有理B样条不仅用于描述结构的几何形状,还用于构建几何形状变化与表面材料分布之间的联系通道,控制点坐标作为形状设计参数,材料密度作为拓扑设计变量,两类变量在统一的优化框架下同时进行更新。在形状优化过程中,设计参数的变化直接反映在非均匀有理B样条控制点的位置变化上,几何模型能够精确更新而无需重新生成分析网格,显著缩短了形状设计更新周期,提高了优化迭代的效率。
2026-01-09 10:45:25
280
原创 改进萤火虫算法的自适应搜索策略与吸引模型优化【附代码】
该改进策略的核心思想是将步长因子设计为与迭代次数呈负相关的动态变化形式,使得算法在迭代初期能够采用较大的搜索步长,快速覆盖解空间的广阔区域,发现潜在的优良解区域,而在迭代后期则自动减小搜索步长,在已发现的优良区域内进行精细搜索,提高最终解的精度。为解决这一问题,本研究进一步引入了概率因子控制机制,通过设置合理的概率阈值,使得萤火虫在部分吸引模型和完全吸引模型之间进行概率性切换,既保证了算法的计算效率,又维持了足够的搜索方向多样性,有效避免了算法过早陷入局部最优。
2026-01-09 10:44:41
909
原创 基于窄谷加宽策略的自适应填充函数方法-复杂优化问题算法求解【附代码】
对于分解后的各个子问题,根据其特性分配不同的优化方法:对于可分离的子问题采用高效的坐标下降法,对于变量之间存在线性耦合的子问题采用改进的共轭梯度法,对于具有复杂非线性耦合的子问题则采用差分进化等启发式方法。本研究提出在当前种群的非支配解集中选择分布相对均匀的解作为参考点,参考点的选择采用基于拥挤距离的筛选机制,确保选出的参考点既能覆盖Pareto前沿的主要区域又能保持相互之间的间隔,这种自适应的参考点选择方式能够根据进化过程中Pareto前沿的形状变化动态调整,从而在保证解的多样性的同时加速算法的收敛。
2026-01-09 10:43:54
546
原创 非正交多址接入无线中继性能优化【附代码】
为此,本研究进一步提出了基于连续凸近似的迭代算法,通过在每次迭代中将非凸项用其一阶泰勒展开进行局部线性化,将原问题转化为一系列易于求解的凸子问题,从而大幅降低了计算复杂度同时保证了算法的收敛性。其次,引入交替优化框架将剩余变量的联合优化问题解耦为两个相对独立的子问题:卸载优化子问题和IRS相位优化子问题。对于IRS相位优化子问题,其难点在于单位模约束的非凸性,本研究提出了基于特征值近似的半定松弛算法,通过将向量优化问题提升为矩阵优化问题并进行适当松弛,将其转化为标准的半定规划问题求解。
2026-01-09 10:43:05
884
原创 多智能体优化沥青路面车辙预测【附代码】
具体而言,每个智能体仅需获取其邻居节点的相对对偶变量符号信息,而无需知道精确的数值,这大大降低了通信开销并增强了系统的鲁棒性。在算法收敛性分析方面,本研究假设目标函数满足温和的凸性条件和Lipschitz连续梯度条件,通过构造合适的Lyapunov函数,证明了系统状态能够渐近收敛到最优解。该算法的优势在于其简洁性和实用性,符号信息的使用使得算法对通信噪声和量化误差具有天然的鲁棒性,这在实际工程应用中具有重要价值。由于目标函数和约束函数的非光滑性,传统的Lyapunov稳定性分析方法需要进行适当推广。
2026-01-09 10:42:26
458
原创 改进鲸鱼优化算法作业车间节能调度【附代码】
在收敛因子的动态调整方面,系统研究了六种不同的调整曲线,包括线性递减曲线、二次递减曲线、指数递减曲线、正弦递减曲线、余弦递减曲线和分段递减曲线,分析了不同调整曲线对算法性能的影响,实验结果表明,正弦递减曲线和分段递减曲线在平衡全局搜索与局部开发方面表现最优。对于低维多目标问题,在传统NSGA-II算法的基础上,引入了基于稀疏度的局部搜索策略,在每一代进化完成后,识别当前Pareto前沿中处于稀疏区域的解,对这些解执行特定的邻域搜索操作,以增加Pareto前沿在稀疏区域的解密度,提高解集的分布均匀性。
2026-01-09 10:41:07
526
原创 电阻抗成像空间分辨率智能优化【附代码】
在边界增强方面,设计了一种基于梯度信息的边界检测与增强算法,首先利用形态学滤波方法对重建图像进行预处理,去除小尺度噪声干扰,然后计算图像的梯度分布,识别出目标区域的边界位置,最后对边界区域进行锐化处理,提高边界的清晰度和对比度。为了综合两种方法的优势,本研究提出了一种融合传统算法与深度学习的混合优化重建框架。在第二阶段中,设计了一种残差学习网络结构,网络的输入为第一阶段的重建图像,输出为图像的优化修正量,通过残差学习策略,网络只需学习重建图像与真实图像之间的差异信息,降低了学习难度,提高了网络的收敛速度。
2026-01-09 10:40:15
572
原创 综合调度问题智能优化算法【附代码】
禁忌表的长度采用自适应调整策略,根据搜索过程中解的改进情况动态调整禁忌期限,当连续多次搜索未能改进当前解时,适当缩短禁忌期限以增加搜索的灵活性,当频繁发现改进解时,适当延长禁忌期限以保持搜索的稳定性。为提高初始种群的质量,设计了一种基于拓扑排序的种群生成策略,该策略首先识别所有入度为零的工序作为候选工序集,然后按照一定的概率选择策略从候选集中选取工序加入调度序列,同时动态更新候选工序集,直至所有工序均被调度完成。在采样阶段,根据学习得到的概率模型生成新的个体,使得新生成的个体能够继承优良个体的特征。
2026-01-09 10:39:43
853
原创 改进二进制粒子群算法特征选择【附代码】
分类准确率的计算采用K折交叉验证策略,将数据集划分为多个互不重叠的子集,轮流以其中一个子集作为测试集、其余子集作为训练集,最终取多次验证结果的平均值作为准确率估计,这种方式有效避免了单次划分可能带来的偶然性偏差。具体而言,每隔一定的迭代间隔,算法对当前种群进行评估和更新,淘汰一部分适应度较差的个体,同时根据优秀个体的特征信息生成新的替补个体加入种群。与文献中已有的进化种群策略相比,所提出的策略在淘汰比例和更新时机的设置上进行了针对性调整,更加适合特征选择问题的特点。(3)改进二进制蜻蜓算法的设计与实现。
2026-01-09 10:38:49
842
原创 隧道炮孔图像识别及光面爆破参数优化【附代码】
针对炮孔目标尺度变化大的特点,改进方法引入了多尺度输入策略和自上而下的多层特征融合机制。依托蟠龙山隧道和海螺峪隧道两个实际工程项目,研究团队历时数月进行了系统性的现场图像采集工作,最终建立了包含单个炮孔、多个炮孔和困难场景炮孔三个子集的大规模数据集,图像总量达到近三万幅,为后续深度学习模型的训练提供了坚实的数据支撑。针对多炮孔和困难炮孔的检测任务,研究采用更深层的ResNet-51网络替代轻量级骨干,以获取更强的特征表达能力,并设计了多阶段训练策略和专门化的损失函数来提升模型对困难样本的学习效果。
2026-01-09 10:37:37
473
原创 分解多目标进化算法应用【附代码】
在问题分解多目标进化算法的改进版本中,该距离度量被整合进邻域更新规则,使得每次迭代不仅考虑解的聚合函数值,还考虑其对整体分布的贡献。基于聚合的多目标进化算法在处理高维优化问题时面临着严峻的多样性损失挑战,这一问题的根源在于传统聚合函数将多目标问题转化为单目标问题的过程中,难以有效维护解集在目标空间中的均匀分布。为解决这一核心问题,研究引入了目标空间中解到权向量垂直距离的显式度量机制,通过计算每个解与其关联权向量之间的几何距离,在进化选择过程中对距离过近的解进行惩罚,从而强制维持解群体的空间分散性。
2026-01-09 10:37:03
752
原创 元启发式优化算法应用【附代码】
流体搜索优化算法将这一物理规律逆向应用于函数优化过程,将目标函数值类比为流体压强,将搜索速度类比为流体流速,使得低压区域即目标函数值较小的区域对应较大的搜索速度,高压区域即目标函数值较大的区域对应较小的搜索速度。基于这一认识,核搜索优化算法通过核函数对目标函数进行局部近似拟合,将非线性目标函数转换为核空间中的近似线性函数,然后在核空间中执行简单的线性搜索,再将搜索结果映射回原始空间得到新的候选解。核函数模型的参数通过最小二乘法求解,使得模型在采样点处的预测值与真实目标函数值的误差最小。
2026-01-09 10:35:57
919
原创 秃鹰搜索优化K-Means动态特征子集聚类【附代码】
离群点检测后采用基于密度的加权策略,为每个样本赋予权重系数,离群点权重设置为接近零的小值,正常样本权重设置为一,在计算簇中心时使用加权均值替代简单均值,有效降低离群点对聚类中心的干扰。在选择阶段秃鹰通过螺旋运动确定搜索中心,标准算法采用固定步长的螺旋轨迹,难以适应不同优化阶段的搜索需求。将改进的秃鹰搜索算法用于优化K-Means初始聚类中心,将聚类中心的选择问题转化为连续优化问题,每只秃鹰代表一组候选聚类中心,秃鹰的维度等于聚类簇数乘以数据维度,适应度函数定义为簇内样本到各自簇中心距离平方和的总和。
2026-01-09 10:33:48
695
原创 改进候鸟算法柔性作业车间调度【附代码】
在每次迭代中首先根据Pareto支配关系划分非支配层级,然后在同一层级内计算每个解与预设参考点集合的最小距离,优先保留能够覆盖更多参考点区域的解,确保获得的Pareto前沿具有良好的收敛性和分布性。在多个标准测试算例和实际生产案例中的对比实验表明,改进候鸟算法在单目标场景下的平均完工时间优于遗传算法、粒子群算法和标准候鸟算法百分之八至百分之十五,在高维多目标场景下获得的解集在反世代距离和超体积两项性能指标上均显著优于NSGAII和NSGAIII算法,验证了所提方法在解决复杂柔性调度问题时的有效性和实用性。
2026-01-09 10:33:05
777
原创 神经动力学时变非线性优化【附代码】
在单机器人和多机器人运动生成任务中的应用实验表明,免伪逆神经动力学算法能够在保证关节角度、关节角速度和关节角加速度都在预定约束范围内的同时,精确完成目标跟踪任务,验证了算法的实用性和有效性。可分布式化的耐噪神经动力学算法的设计基于分布式优化的基本框架,将原问题分解为若干子问题由不同的计算节点并行求解,节点之间通过通信交换必要的信息以实现全局协调。为了解决这一问题,提出一种免伪逆的神经动力学算法,通过巧妙的问题变换和算法设计来避免伪逆运算,从而大幅降低计算复杂度,提高算法的实时性。
2026-01-09 10:29:50
893
原创 粒子群及差分进化算法【附代码】
在中心学习策略的设计中,首先根据适应度值对群体中的粒子进行排序,选取适应度较好的若干粒子作为精英子群体,计算精英子群体的几何中心或加权中心作为学习目标。在离散学习策略的设计中,每个粒子随机选择群体中的其他粒子作为学习对象,而不是仅仅向全局最优粒子学习,这种分布式的学习方式可以保持群体的多样性,避免所有粒子过早地聚集到同一区域而陷入局部最优。每个粒子在搜索空间中代表一个潜在的解,粒子根据自身的历史最优位置和群体的全局最优位置来调整自己的飞行速度和方向,从而逐步逼近最优解。
2026-01-09 10:26:39
692
原创 分数阶微积分CNN优化算法【附代码】
然后引入Caputo型分数阶导数来替代传统的整数阶导数,通过调节分数阶阶次参数来控制历史梯度信息的利用程度。针对卷积神经网络的特殊结构,需要分别设计全连接层和卷积层的参数更新策略,全连接层的权重矩阵采用标准的分数阶梯度更新方式,而卷积层的卷积核参数则需要考虑卷积操作的特殊性,将分数阶梯度计算与卷积运算相结合。将PID控制的思想引入到神经网络优化算法中,可以将参数训练过程视为一个反馈控制过程,其中当前损失函数值与期望最小值之间的差距作为控制误差,参数更新量作为控制输入,通过PID控制器来调节参数更新策略。
2026-01-09 10:26:07
618
原创 贝叶斯优化算法射频功率放大器设计【附代码】
实验结果表明,该方法成功设计了一款非对称宽带DPA,在2.0-2.6GHz频段内,不仅保持了高饱和功率,还在回退6dB和9dB处实现了极高的漏极效率,解决了传统DPA带宽窄和回退效率提升难的问题。在随后的优化过程中,贝叶斯优化不再针对单一的每一个微带参数进行采样,而是针对这些“参数簇”进行协同调整。结合聚类指导策略,该流程在设计多倍频程宽带PA时,相比于传统的随机搜索或梯度下降法,收敛速度提升了数倍,且最终设计的PA在带宽、效率和增益等综合指标上均优于基于传统拓扑优化的结果。
2026-01-05 11:09:57
291
原创 改进狼群算法陶瓷烧制组合优化【附代码】
此外,改进算法还优化了头狼的产生规则和猛狼的更替机制,确保种群始终保持较高的活性,避免了因个别强势个体导致的早熟收敛现象。通过建立严格的数学模型,定义了包含产品价值、体积占用、能耗成本的目标函数,并将复杂的工艺约束转化为惩罚项或可行性通过规则,使得算法能够在巨大的组合空间中快速定位出满足所有工艺要求的高效益装窑方案。具体而言,在生成初始狼群时,不仅生成一组随机解,还同时计算其对应的反向解(即0变1,1变0,或基于边界的对称点),并通过比较目标函数值,择优保留进入初始种群。
2026-01-05 11:09:25
237
原创 MOEA/D算法重载列车运行曲线多目标优化【附代码】
通过对每一节车辆建立独立的微分方程组,该模型能够实时计算列车各部位的速度、加速度以及车钩力分布,为评估列车运行的安全性(如防止断钩、脱钩)和平稳性提供了高精度的物理基础。正点性指标则通过最小化实际运行时间与图定时间的偏差来体现。优化模型还将线路实际条件(如限速区段、变坡点)以及驾驶操作规范(如过分相区的操作限制)作为硬性约束条件,确保生成的运行曲线在工程上是可执行的。其次,引入了ε-支配机制,放宽了对支配关系的判定标准,增强了算法在进化后期跳出局部最优的能力,并有助于保持种群的多样性。
2026-01-05 11:08:54
376
原创 天牛须搜索算法矿井风量优化调节【附代码】
其次,结合了群体智能思想,将单一天牛扩展为天牛种群,利用个体间的信息交互机制,使得陷入局部最优的个体会受到全局最优个体的引导而跳出困境;通过计算灵敏度矩阵,定义了分支支配度指标,从而筛选出那些对灾变区域风量影响最大、调节效率最高的关键分支作为优化对象,极大地缩小了搜索空间,提高了算法的实时响应速度。该方案优先在那些能够反映全矿井风流状态变化的关键节点和高灵敏度分支上部署传感器,确保了风量监测数据的代表性和准确性,为后续的闭环反馈控制提供了可靠的数据支撑。
2026-01-05 11:08:22
460
原创 两阶段搜索多模态多目标优化算法【附代码】
此外,在两阶段搜索的每一代迭代中,NMOMMO都强化了非支配解集的导向作用。实验表明,这种结合了邻域拓扑结构和自适应变异策略的方法,显著提高了算法在处理具有复杂几何形状和大量局部最优解的多模态多目标问题时的鲁棒性,能够生成分布更加均匀、覆盖更加全面的等效帕累托解集。在第二阶段结束后,算法将两阶段产生的所有种群进行合并,并再次执行基于多模态拥挤距离的最终环境选择,剔除重复解和劣质解,从而确保最终输出的解集不仅在目标空间逼近真实前沿,而且在决策空间涵盖了尽可能多的模态峰值,为决策者提供了极其丰富的方案选择。
2026-01-05 11:07:47
796
原创 昂贵多模态问题代理辅助粒子群优化【附代码】
这种分层协同机制解决了代理模型规模与模态数目不匹配的难题,使得算法能够在极有限的真实函数评价次数(CFD/FEM计算)下,同时捕获多个高质量的最优解,实现了计算代价与搜索广度的最优平衡。构建了一个包含多种基础回归模型的“模型池”,并设计了动态选择机制,根据待评价粒子与已知模态区域的匹配度,自主选择最合适的模型进行集成预测。这种方法极大提升了算法在噪声环境和模型误差存在下的鲁棒性,有效防止了因模型误导造成的种群早熟或错误收敛,确保了在低代价下对多模态景观的准确覆盖。
2026-01-05 11:02:05
387
原创 混合DE-NSGA Ⅱ算法齿轮泵应用【附代码】
针对多目标优化领域中著名的非支配排序遗传算法(NSGA-Ⅱ)在进化初期易早熟收敛、种群多样性丧失以及差分进化算法(DE)对缩放因子高度敏感的问题,本研究提出了一种深度融合的混合优化算法。这构成了一个典型的高维、非线性、带约束的多目标优化问题,单纯依靠经验公式或单目标优化难以找到完美的平衡点,必须依靠多目标进化算法求解帕累托最优解集。实验结果展示了算法生成的帕累托前沿分布,与标准NSGA-Ⅱ及MOEA/D等算法相比,混合算法求得的解集分布更加均匀且延展性更好,意味着为设计者提供了更多样化的选择方案。
2026-01-05 11:01:35
304
原创 灰狼优化算法求解组合优化问题【附代码】
这两种策略不仅保留了GWO算法原有的等级制度(Alpha, Beta, Delta狼引导狩猎)和包围机制,还赋予了其在离散格点上跳跃搜索的能力,形成了离散灰狼优化算法DGWO1和DGWO2,为解决复杂的NP难组合问题奠定了算法基础。实验结果表明,IDGWO1能够有效处理高维度的背包约束,不仅在标准测试集上找到了比现有文献更优的解,而且在算法运行的稳定性上具有显著优势,证明了离散化改造后的灰狼算法在处理具有强约束条件的组合优化问题时具有强大的适应性。
2026-01-05 11:00:58
270
原创 群智能算法优化入侵检测模型【附代码】
实验证明,这种协同优化策略不仅显著缩短了传统网格搜索的耗时,还能筛选出约为原特征集1/4的关键特征子集,从而在大幅提升检测效率的同时,保持甚至超越了全特征集下的检测精度。适应度函数的设计综合考虑了集成系统的整体准确率以及子分类器之间的差异度(Diversity),旨在挑选出一组“既准确又互补”的精英子分类器进行集成。这种基于群智能的剪枝策略,成功去除了冗余和低效的子模型,使得最终的集成模型在保持极高检测精度的前提下,大幅减少了预测阶段的计算开销,实现了轻量化与高性能的平衡。
2026-01-05 11:00:26
383
原创 鲸鱼优化算法石油管道泄漏检测【附代码】
本研究的核心在于对经典的管道流体动力学模型中的切应力项进行修正。通过与Pipeline Studio等专业仿真软件的对比验证,该修正模型在沿程压力分布和流速计算上的相对误差被控制在极低范围内,特别是对泄漏点下游的压力下降和上游的流量增加现象模拟得更为逼真,为后续的泄漏定位提供了高置信度的物理模型基础。尽管在微小泄漏孔径的预测上仍存在一定误差,但整体系统在面对不同泄漏量、不同泄漏位置的工况时,展现出了良好的鲁棒性,能够将定位误差控制在工程允许的范围内,为长输石油管道的安全监控提供了一种可行的软测量解决方案。
2026-01-05 10:59:48
800
原创 哈里斯鹰优化算法工程应用【附代码】
为此,本研究提出了一种改进的CTHHO算法,核心在于引入了两个具有特定数学性质的算子来调控算法的搜索行为。系数Beta主要作用于算法的局部开发阶段,随着迭代进行,Beta值逐渐减小,用于精细控制搜索步长,使哈里斯鹰能够对潜在的最优位置进行微米级的逼近,从而提高布局坐标的精度。通过数学仿真实验验证,这两个算子的协同作用显著增强了算法对局部空间的精细搜索能力和对全局最优解的锁定能力,在CEC2017基准函数测试中,CTHHO在收敛速度和最终解的精度上均大幅超越了原始HHO及其他主流元启发式算法。
2026-01-05 10:51:56
576
原创 改进鹈鹕算法多目标优化算法【附代码】
通过这种动态的档案维护机制,MOIPOA不仅保留了进化过程中的精英信息,还有效引导了鹈鹕种群向帕累托前沿收敛,同时避免了种群在某一局部区域的过度聚集,确保了最终获得的非支配解集具有良好的多样性和均匀度,解决了传统多目标算法容易陷入局部最优且解集分布不均的难题。通过Sobel序列初始化的鹈鹕个体,能够更全面地覆盖整个决策空间,为后续的搜索过程提供了良好的全局视野,显著提高了初始种群的多样性,从源头上减少了算法陷入局部极值的风险。同时,对于需要协同到达或协同执行任务的节点,检验其时间差是否在允许的误差范围内。
2026-01-05 10:51:16
1368
原创 混合天牛群优化算法网络覆盖技术【附代码】
这一机制模拟了生物种群间的信息交流与基因重组,极大地丰富了种群的多样性,防止了信息的单向流动和闭塞。在理想环境下的网络节点覆盖仿真中,这种改进策略显著提升了节点的有效覆盖率,减少了覆盖空洞和重叠冗余。在应用DEBSO算法求解该模型时,考虑了传感器的感知半径和通信半径约束。结果显示,经过DEBSO优化后的节点分布呈现出近似蜂窝状的均匀结构,有效地修补了随机部署产生的覆盖盲区,并且在面对不规则边界或障碍物阻挡的复杂环境时,算法能够智能地调整节点位置进行避让和补位,证明了其在提升WSN服务质量方面的显著效果。
2026-01-05 10:49:28
795
原创 贪婪策略蚁群优化算法应用【附代码】
为了拓展ACO的应用领域并提升其在高维参数优化中的性能,本研究设计了一种结合随机森林算法的“混合贪婪策略”。本方案将ACO的寻优能力与随机森林的预测能力相结合,将随机森林的超参数组合映射为ACO的路径节点。在此过程中,混合贪婪策略发挥了关键作用:它不仅利用信息素引导搜索,还引入了随机森林在验证集上的实时反馈作为“瞬时贪婪”的依据。研究深入讨论了算法的鲁棒性,通过对比实验发现,无论是在城市规模扩大的TSP案例中,还是在数据噪声较大的供暖数据中,基于贪婪策略的ACO均表现出了极强的适应性。
2026-01-05 10:48:49
278
原创 被囊群算法优化及其应用【附代码】
传统的TSA依赖随机生成的初始位置,这可能导致种群分布在搜索空间的贫瘠区域,而反向学习通过计算当前解的对称反向解,强制算法同时评估当前位置与其对立位置的适应度,从而大幅提高了发现潜在最优区域的概率,有效地扩展了搜索视野。这种机制赋予了TSA在搜索空间中进行大范围穿梭的能力,极大地破坏了局部最优陷阱的吸引域,特别是在无线传感器网络(WSN)的节点部署优化中,能够有效避免节点在某一区域过度聚集,提升了网络的整体覆盖率。在悬臂梁设计中,算法在满足应力、挠度等强度刚度约束的前提下,有效降低了结构重量。
2026-01-05 10:47:46
375
原创 种群优化算法收敛性研究【附代码】
在这一框架下,算法的迭代过程被抽象为种群在这些子区域间的概率转移过程。改进后的算法在保留原有启发式机制的同时,增加了一个强制性的空间分割探测机制,确保了搜索过程的遍历性。在多个标准测试函数上的对比实验显示,经过PCFrame-P框架指导改进的算法,不仅在理论上拥有了全局收敛的“护身符”,在实际运行性能上也表现出了更强的鲁棒性。该算法利用PCFrame-P的分割思想,将图像灰度直方图的搜索空间进行多层级划分,引导雇佣蜂和观察蜂在不同的直方图区域进行差异化搜索,避免了种群在单一阈值附近的过度聚集。
2026-01-05 10:45:43
475
原创 多目标优化算法柔性车间调度应用【附代码】
进入第二阶段后,算法重心转移至解的分布质量,引入特定的局部搜索策略,对已经收敛到前沿附近的个体进行微调,消除分布的拥挤现象,填补断层区域,确保最终获得的解集能够均匀覆盖整个帕累托前沿。该算法不再使用固定的权重向量,而是根据进化过程中的反馈信息,随着迭代次数的增加动态调整权重向量的分布。特别地,为了响应绿色制造的节能需求,方案中嵌入了一种专门的局部搜索策略,该策略在机器加工序列确定后,通过在不影响最大完工时间的前提下,尝试插入空闲时间段或调整非关键工序,以减少机器的空载等待能耗。
2026-01-05 10:44:23
1023
原创 改进人工鱼群算法阻尼器参数优化【附代码】
人工鱼群算法模拟了鱼群的觅食、聚群、追尾和随机四种基本行为,具有良好的全局收敛性和鲁棒性。例如,在保证附加阻尼比满足《云南省建筑工程抗震设防专项审查技术要点》的要求下(即0.1倍U0后仍保持预期阻尼比),算法自动调整了阻尼器的分布密度,在薄弱层增加了配置,在非关键层减少了冗余,实现了性能与成本的双重优化。通过MATLAB调用SAP2000的OAPI接口,实现算法寻优与结构计算的自动化交互,每一次人工鱼群的迭代都对应一次完整的结构时程分析,确保了优化结果符合真实的物理力学性能,而非仅仅是数学上的近似。
2026-01-05 10:41:11
237
原创 反向学习与试探感知灰狼优化算法【附代码】
改进后的方案在领导层狼群的周围引入了“试探因子”,即在当前最优解的邻域内生成一组微小的扰动向量。通过在迭代过程中不断地在当前最优解附近进行高频、小范围的随机探测,增强了算法对“陷阱”的识别能力,确保了种群在趋同的同时保留了向外逃逸的潜力,从而大幅提高了算法跳出局部最优解的能力。这种策略从概率上极大地增加了初始种群包含全局最优解附近点的可能性,有效地扩充了搜索视野,为后续的迭代搜索奠定了良好的基础,显著提升了算法初期的收敛速率和解的质量,特别是在处理具有大量局部极值点的云资源调度模型时优势明显。
2026-01-05 10:40:35
715
原创 改进算术优化算法电力经济调度【附代码】
在传统的算术优化算法(AOA)中,数学优化加速参数(MOA)和数学优化概率参数(MOP)的变化趋势往往较为单一,导致算法在迭代后期容易陷入局部最优解,且收敛速度难以满足实时调度的需求。在具体的ELD案例仿真中,这种基于初等函数扰动的策略不仅降低了系统的燃料成本,还大幅缩短了计算时间,证明了其在解决大规模电力系统调度问题上的有效性。为此,本方案在MOA参数的变化过程中引入了双曲正切波动项,这种非线性的波动使得算法在迭代过程中能够交替进行广域搜索和窄域搜索,增强了对复杂地形的适应能力。
2026-01-05 10:39:44
624
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅