题目:
http://acm.hdu.edu.cn/showproblem.php?pid=5495
题意:
给出1~n的两个排序a[n],b[n],求用某个排序p[n],使得a[p[0]],a[p[1]],a[p[2]]······与b[p[0]],b[p[1]],b[p[2]]······的最长公共子序列取得最大值,求最终取得的LCS多大。
思路:
LCS一定会tle的,关键就是这是1~n的序列,所以必然a[],b[]存在相同的数字,也就是一定会由一些循环节组成,而每个循环节经过排列首尾相接一定会有只相错一位的情况,最终的LCS也就是总长减去循环节的个数,特判自环不减就行了。直接深搜写的,跑得比较慢。
代码:
#define N 112345
int n,m;
int flag,sum,ave,ans,res,len,ans1,ans2;
int a[N],b[N];
bool vis[N];
bool dfs(int now)
{
int t=b[now];
if(!vis[t])
{
vis[t]=true;
dfs(a[t]);
return true;
}
return false;
}
int main()
{
int i,j,k,kk,t,x,y,z;
scanf("%d",&k);
kk=0;
while(k--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
for(i=1;i<=n;i++)
{
scanf("%d",&t);
b[t]=i;
}
sum=0;
memset(vis,false,sizeof(vis));
for(i=1;i<=n;i++)
if(!vis[i])
{
vis[i]=true;
if(!dfs(a[i]))sum--;
sum++;
}
printf("%d\n",n-sum);
}
return 0;
}