题目:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2852
题意:
求所有小于等于2^64-1的满足a^i==b^j==x的数,升序输出。
思路:
满足a^i==b^j==x,则必然a^k==b,所以就是某数的合数次方就满足该式,最小合数是4所以暴力枚举2到(1<<16)就行了,因为要排序还要去重,用set存。
代码:
#include<bits/stdc++.h>
#define N 112
#define MAXTOP(x) (ceil(64/(log(x)/log(2)))-1)
using namespace std;
bool mark[N];
int pri[N],cnt;
void SP()
{
cnt=0;
memset(mark,true,sizeof(mark));
mark[0]=mark[1]=false;
for(int i=2;i<N;i++)
{
if(mark[i])
pri[cnt++]=i;
for (int j=0;(j<cnt)&&(i*pri[j]<N);j++)
{
mark[i*pri[j]]=false;
if (i%pri[j]==0)
break;
}
}
}
int main()
{
unsigned long long i,j,k,kk,t,x,y,z;
SP();
printf("1\n");
set<unsigned long long> st;
for(i=2;i<(1<<16);i++)
for(y=i,j=1;j<=MAXTOP(i);j++,y*=i)
if(!mark[j]&&j>1)if(st.count(y)==0) st.insert(y);
set<unsigned long long>::iterator it=st.begin();
while(it!=st.end()){printf("%llu\n",*it++);}
return 0;
}