[带限制的01背包 排序] hdu3466

题目

有n个商品,购买它的价格为pi,需要购买者余额大于等于qi才能购买,卖出的获利为vi。一个人有m块钱,求他的最大获利
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3466

题目

如果没有购买条件限制,这道题就是一个01背包。
所以我们来处理限制。
只有保证 dp[j - a[i].p] 最优,才能保证 dp[j] 最优,满足无后效性。
若想使 dp[j - a[i].p] 最优,即要保证对于任意两组值:( p1, q1, v1 、( p2, q2, v2)
假设先选择1,若想满足无后效性,则 j-a[2].p >= a[1].q且 j-a[1].p <= a[2].q
否则可能出现,依赖先选2计算的值取到更优的解
由此推得:a[1].q - a[1].p <= a[2].q - a[2].p

因此先对数组a按照q-p从小到大排序,而后01背包

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<cctype>
#include<ctime>
#include<iostream>
#include<string>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<iomanip>
#include<list>
#include<bitset>
#include<sstream>
#include<fstream>
#include<complex>
#include<algorithm>
#if __cplusplus >= 201103L
#include <unordered_map>
#include <unordered_set>
#endif
#define ll long long
using namespace std;
const int INF = 0x3f3f3f3f;
int dp[5010];
struct sut{
	int p,v,q;
}a[510];
int cmp(sut a1,sut b){
	return a1.q-a1.p<b.q-b.p;
}
int main(){
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	int n,m;
	while(cin>>n>>m){
	for(int i=1;i<=n;i++){
		cin>>a[i].p>>a[i].q>>a[i].v;
	} 
	sort(a+1,a+1+n,cmp);
	memset(dp,0,sizeof dp);
	for(int i=1;i<=n;i++){
		for(int j=m;j>=a[i].q;j--){
			dp[j]=max(dp[j],dp[j-a[i].p]+a[i].v);
		} 
	}
	cout<<dp[m]<<endl;
	}
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值