22、机器学习中的逻辑回归:理论与实践

机器学习中的逻辑回归:理论与实践

1. 多项式模型的注意事项

在模型构建中,若使用多项式模型,当模型的R - Square有所改善且二次项显著时,二次多项式的拟合效果通常优于线性情况。不过,将此思路扩展到更高次多项式时需谨慎,因为这可能会导致过拟合,而且许多实际过程并不适合用高次多项式来表示。如果计划使用四次以上的多项式,在解释模型时要格外小心。

2. 逻辑回归概述

在传统的线性回归中,因变量是具有实数值的连续变量,且要求误差服从正态分布,回归方程才有效。但当因变量只能取两个值(如0和1),即服从二项分布时,误差项就不再服从正态分布。此时,就需要采用不同的框架来处理这类因变量不服从高斯分布,而是来自指数分布族的情况。

逻辑回归用于建模预测变量与分类响应/因变量之间的关系。例如在信用风险问题中,可使用预测变量来建模违约或不违约的二项结果。

3. 逻辑回归的类型

逻辑回归根据分类(响应)变量的类型可分为以下三种:
- 二项逻辑回归 :响应变量只有两个可能的值(0/1)。通常先估计其为1的概率,再根据某个阈值来预测响应变量的状态。二项分布的概率质量函数为:
[f(k; n, p) = Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}]
其中,$k$ 是成功的次数,$n$ 是试验的总次数,$p$ 是每次试验成功的概率。
- 多项逻辑回归 :分类响应变量有三个或更多的值/水平。通常会计算每个水平的概率,然后根据某种分类规则(如最大概率)来确定响应变量的状态。多项分布的概

需求响应动态冰蓄冷系统需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值