题目描述
有一个二维矩阵
A
其中每个元素的值为0
或1
。移动是指选择任一行或列,并转换该行或列中的每一个值:将所有
0
都更改为1
,将所有1
都更改为0
。在做出任意次数的移动后,将该矩阵的每一行都按照二进制数来解释,矩阵的得分就是这些数字的总和。
返回尽可能高的分数。
示例:
输入:[[0,0,1,1],[1,0,1,0],[1,1,0,0]] 输出:39 解释: 转换为 [[1,1,1,1],[1,0,0,1],[1,1,1,1]] 0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39
提示:
1 <= A.length <= 20
1 <= A[0].length <= 20
A[i][j]
是0
或1
思路:
- 首先要保证首列全部为
1
,就是说A[i][0]=1
,0<=i<row
。 - 然后每列要尽可能多的
1
附上代码:
class Solution(object):
def matrixScore(self, A):
"""
:type A: List[List[int]]
:rtype: int
"""
if not A:
return 0
row = len(A)
col = len(A[0])
print("初始值:",A)
for i in range(row):
if A[i][0] == 0:
for j in range(col):
A[i][j] = 1 - A[i][j]
print("首列全为0:",A)
base = 1
res = 0
for k in range(col-1,-1,-1):
temp_one = sum([A[i][k] for i in range(row)])
max_col_one = max(temp_one,row - temp_one)
temp = max_col_one*base
res += temp
base = base << 1
return res
测试代码:
a = Solution()
print(a.matrixScore([[0,0,1,1],[1,0,1,0],[1,1,0,0]]))
答案显示:
39
正确!!