第七章——树

小结

‧ 二叉树是一种非线性数据结构,体现“一分为二”的分治逻辑。每个二叉树节点包含一个值以及两个指针,分别指向其左子节点和右子节点。

‧ 对于二叉树中的某个节点,其左(右)子节点及其以下形成的树被称为该节点的左(右)子树。

‧ 二叉树的相关术语包括根节点、叶节点、层、度、边、高度和深度等。

‧ 二叉树的初始化、节点插入和节点删除操作与链表操作方法类似。

‧ 常见的二叉树类型有完美二叉树、完全二叉树、满二叉树和平衡二叉树。完美二叉树是最理想的状态,而链表是退化后的最差状态。

‧ 二叉树可以用数组表示,方法是将节点值和空位按层序遍历顺序排列,并根据父节点与子节点之间的索引映射关系来实现指针。

‧ 二叉树的层序遍历是一种广度优先搜索方法,它体现了“一圈一圈向外”的分层遍历方式,通常通过队列来实现。

‧ 前序、中序、后序遍历皆属于深度优先搜索,它们体现了“走到尽头,再回头继续”的回溯遍历方式,通常使用递归来实现。

‧ 二叉搜索树是一种高效的元素查找数据结构,满足:1. 对于根节点,左子树中所有节点的值<根节点的值<右子树中所有节点的值。2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件1。

其查找、插入和删除操作的时间复杂度均为𝑂(log𝑛)。当二叉搜索树退化为链表时,各项时间复杂度会劣化至𝑂(𝑛)。

‧ AVL树,也称为平衡二叉搜索树,它通过旋转操作,确保在不断插入和删除节点后,树仍然保持平衡。

‧ AVL树的旋转操作包括右旋、左旋、先右旋再左旋、先左旋再右旋。在插入或删除节点后,AVL树会从底向顶执行旋转操作,使树重新恢复平衡。

四种失衡情况对应的旋转操作:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穿梭的编织者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值