机器学习第七讲:概率统计 → 预测可能性,下雨概率70%就是典型应用

机器学习第七讲:概率统计 → 预测可能性,下雨概率70%就是典型应用

资料取自《零基础学机器学习》
查看总目录:学习大纲

关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeek R1本地与线上满血版部署:超详细手把手指南


一、天气预报的数学智慧 ☔️(教材第七章入门案例1

核心原理
气象台通过分析历史数据与实时传感器的多维信息:

累计指标>阈值
卫星云图
概率模型
气压值变化
湿度监测
决策树
发布70%降水概率

二、概率计算三维透视 🔍

示例:预测明早8-9点降雨可能性

  1. 历史相似日统计(教材第七章2.1节2
    近5年同节气共有20次相似气象条件,其中14次降雨
    14 20 = 70 % \frac{14}{20} = 70\% 2014=70%

  2. 传感器实时融合

    45% 30% 25% 实时数据权重 湿度传感器 风速仪 热成像仪
  3. 贝叶斯定理更新(动态修正3
    原本预测60% → 新监测到积雨云 → 概率提升至70%


三、生活中的概率镜子 🪞

场景预测逻辑数学表达
手游抽卡保底机制触发后的SSR概率翻倍P(SSR|保底)=2×0.6%
癌症筛查检测阳性时真实患病的概率(贝叶斯公式)P(患病|阳性)=8.3%
股票涨跌MACD金叉出现后的上涨概率估算历史置信区间62%-68%

四、预测工具包盘点 🧰

  1. 概率密度函数(教材第七章图例4
    降雨量预测的正态分布曲线:

    均值=50mm
    68%概率在30-70mm
    95%概率在10-90mm
  2. 蒙特卡洛模拟 🎲
    通过10万次数字仿真得出暴雨概率:

    import random
    flood_count = 0
    for _ in range(100000):
        if random降雨量() > 100mm:
            flood_count +=1
    print(f"暴雨概率: {flood_count/100000:.2%}")
    

五、典型误解破解 🚫(教材第七章常见误区5

误区:"70%下雨概率"意味着:
❌ 时间维度:70%时间会下雨
❌ 区域面积:城市70%区域下雨

正解:在100次相同气象条件下,估计有70次会发生降雨事件


六、智能决策实战 👨💼

雨天快递调度系统

>80%
50%-80%
<50%
降水概率70%
决策树
启动防雨预案:15辆防水货车
混合调度:10防水+5普通
常规车辆派遣

运营成本对比

策略运输成本货损成本总成本
完全防水¥85万¥2万¥87万
概率优化策略¥63万¥5万¥68万

七、知识迁移图谱 🌐

基础概率
天气预报
农业灌溉
航空管制
金融风控
保险精算
智能定价

八、精要总结 💎

概率预测是通过量化不确定性将抽象的「可能性」转化为具体可操作的决策依据(教材第七章核心观点1

(典型案例:上海迪士尼根据降雨概率动态调整户外演出场次🎡)

目录:总目录
上篇文章:机器学习第六讲:向量/矩阵 → 数据表格的数学表达,如Excel表格转数字阵列



  1. 《零基础学机器学习》第七章第一节"概率本质解读",P.322 ↩︎ ↩︎

  2. 《零基础学机器学习》第七章案例7-2"历史数据分析法",P.335 ↩︎

  3. 《零基础学机器学习》第七章贝叶斯定理推导,P.347 ↩︎

  4. 《零基础学机器学习》第七章图7-5正态分布模型,P.359 ↩︎

  5. 《零基础学机器学习》第七章注意事项,P.372 ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kovlistudio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值