机器学习第十六讲:K-means → 自动把超市顾客分成不同消费群体
资料取自《零基础学机器学习》。
查看总目录:学习大纲
关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeek R1本地与线上满血版部署:超详细手把手指南
K-means是一种用于自动将相似数据分组的无监督学习算法。下面用超市顾客分组的例子详细讲解:
一、核心原理(类似整理杂货铺)
假设你有一堆散落的商品要分类摆放,但不知道应该分几类。K-means的解决步骤是:
- 随机选位置:先猜测分3类,在卖场随机选3个货架位置作为初始"中心点" [1-3][3]
- 就近摆放:把所有商品摆到离它最近的货架周围,形成3个临时区域 [^3]
- 调整中心:在每个临时区域中心放个新货架,替代原来的随机位置 [^3]
- 重复优化:根据新货架位置重新摆放商品,直到货架位置不再明显变化 [^3]
K-means算法实现超市顾客分群

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



