机器学习第十六讲:K-means → 自动把超市顾客分成不同消费群体

K-means算法实现超市顾客分群

机器学习第十六讲:K-means → 自动把超市顾客分成不同消费群体

资料取自《零基础学机器学习》
查看总目录:学习大纲

关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeek R1本地与线上满血版部署:超详细手把手指南


K-means是一种用于自动将相似数据分组的无监督学习算法。下面用超市顾客分组的例子详细讲解:

一、核心原理(类似整理杂货铺)

假设你有一堆散落的商品要分类摆放,但不知道应该分几类。K-means的解决步骤是:

  1. 随机选位置:先猜测分3类,在卖场随机选3个货架位置作为初始"中心点" [1-3][3]
  2. 就近摆放:把所有商品摆到离它最近的货架周围,形成3个临时区域 [^3]
  3. 调整中心:在每个临时区域中心放个新货架,替代原来的随机位置 [^3]
  4. 重复优化:根据新货架位置重新摆放商品,直到货架位置不再明显变化 [^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kovlistudio

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值