编程之美读书笔记2.1—求二进制数中1的个数

解法一:

可以举一个8位二进制的例子。对于二进制操纵,我们除以一个2,原来数字就会减少一个0(向右移一位)。如果除的过程中有余,那么久表示当前位置有一个1。

以10100010为例:

第一次除以2时,商为1010001,余为0

第二次除以2时,商为101000,余为1
因此,考虑利用整形数据除法的特点,通过相除和判断余数的值进行分析。
 

int Count(int a)
{
    int count = 0;
    while(a)
    {
         if(a % 2 == 1)
         {
              count++;  
         }
         a = a / 2;
    }
    return count;
}

解法二:位操作

 

使用位操作同样达到相除的目的。

使用与操作(&)来判断最后一位是不是1,判断完后向右移一位,继续判断。

可以把这个八位数与00000001进行与操作,如果结果为1则表示这个八位数最后一位为1,否则为0

int Count(int a)
{
    int count = 0;
    while(a)
    {
         count += a & 0x01;
         a >>= 1;
    }
    return count;
}

解法三:

作者用到一个巧妙的方法,自己与自己减1相与,(例:10100010 & 10100001 = 10100000)从而到达消去最后一位1,通过统计循环次数达到计算1的个数的目的,这个方法减少了一定的循环次数。

具体解析看看原著。

int Count(int a)
{
    int count = 0;
    while(a)
    {
		a = a & (a-1);
        count++;
    }
    return count;
}

解法四:分支操作

解法三的复杂度降到O(M). 其中M为1的个数。这效率已经足够高了。

如果还不满足,还有一种方法。既然才是一个8位的数据(0~255),可以直接0~255的情况罗列出来,使用分支操作,得到答案。

这个方法看似很直接,但是效率可能会比其他方法要低。具体情况具体分析。如果a = 0比较一次就会得到答案,但是a = 255比较255次才得到答案
 

int Count(int a)
{
    int count = 0;
    switch(a)
    {
        case 0x0:
             count = 0;
             break;
        case 0x1:
        case 0x2:
        case 0x4:
        case 0x8:
        case 0x10:
        case 0x20:
        case 0x40:
        case 0x80:
             count = 1;
             break;
        case 0x3:
        case 0x6:
        case 0xc:
        case 0x18:
        case 0x30:
        case 0x60:
        case 0xc0:
             count = 2;
             break; 
        //.....
    }
    return count;
}

解法五:查表法

直接把0~255相应1的个数直接存在数组中,采取以空间换取时间。时间复杂度为1。

int CountTable[256] =     
{        
         0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
         1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
         1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
         1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
         3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
         1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
         3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
         2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
         3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
         3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
         4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8        
};
 
int Count(int a)
{
    return CountTable[a];
}

动态建表

由于表示在程序运行时动态创建的,所以速度上肯定会慢一些,把这个版本放在这里,有两个原因

1. 介绍填表的方法,因为这个方法的确很巧妙。

2. 类型转换,这里不能使用传统的强制转换,而是先取地址再转换成对应的指针类型。也是常用的类型转换方法。

int BitCount3(unsigned int n) 
{ 
    // 建表
    unsigned char BitsSetTable256[256] = {0} ; 

    // 初始化表 
    for (int i =0; i <256; i++) 
    { 
        BitsSetTable256[i] = (i &1) + BitsSetTable256[i /2]; 
    } 

    unsigned int c =0 ; 

    // 查表
    unsigned char* p = (unsigned char*) &n ; 

    c = BitsSetTable256[p[0]] + 
        BitsSetTable256[p[1]] + 
        BitsSetTable256[p[2]] + 
        BitsSetTable256[p[3]]; 

    return c ; 
}

先说一下填表的原理,根据奇偶性来分析,对于任意一个正整数n

1.如果它是偶数,那么n的二进制中1的个数与n/2中1的个数是相同的,比如4和2的二进制中都有一个1,6和3的二进制中都有两个1。为啥?因为n是由n/2左移一位而来,而移位并不会增加1的个数。

2.如果n是奇数,那么n的二进制中1的个数是n/2中1的个数+1,比如7的二进制中有三个1,7/2 = 3的二进制中有两个1。为啥?因为当n是奇数时,n相当于n/2左移一位再加1。

再说一下查表的原理

对于任意一个32位无符号整数,将其分割为4部分,每部分8bit,对于这四个部分分别求出1的个数,再累加起来即可。而8bit对应2^8 = 256种01组合方式,这也是为什么表的大小为256的原因。

注意类型转换的时候,先取到n的地址,然后转换为unsigned char*,这样一个unsigned int(4 bytes)对应四个unsigned char(1 bytes),分别取出来计算即可。举个例子吧,以87654321(十六进制)为例,先写成二进制形式-8bit一组,共四组,以不同颜色区分,这四组中1的个数分别为4,4,3,2,所以一共是13个1,如下面所示。

10000111 01100101 01000011 00100001 = 4 + 4 + 3 + 2 = 13

 

 

静态表-8bit

首先构造一个包含256个元素的表table,table[i]即i中1的个数,这里的i是[0-255]之间任意一个值。然后对于任意一个32bit无符号整数n,我们将其拆分成四个8bit,然后分别求出每个8bit中1的个数,再累加求和即可,这里用移位的方法,每次右移8位,并与0xff相与,取得最低位的8bit,累加后继续移位,如此往复,直到n为0。所以对于任意一个32位整数,需要查表4次。以十进制数2882400018为例,其对应的二进制数为10101011110011011110111100010010,对应的四次查表过程如下:红色表示当前8bit,绿色表示右移后高位补零。

第一次(n & 0xff)             10101011110011011110111100010010

第二次((n >> 8) & 0xff)  00000000101010111100110111101111

第三次((n >> 16) & 0xff)00000000000000001010101111001101

第四次((n >> 24) & 0xff)00000000000000000000000010101011
 

int BitCount7(unsigned int n)
{ 
    unsigned int table[256] = 
    { 
        0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 
        4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 
    }; 

    return table[n &0xff] +
        table[(n >>8) &0xff] +
        table[(n >>16) &0xff] +
        table[(n >>24) &0xff] ;
}

 

5.平行算法

int BitCount4(unsigned int n) 
{ 
    n = (n &0x55555555) + ((n >>1) &0x55555555) ; 
    n = (n &0x33333333) + ((n >>2) &0x33333333) ; 
    n = (n &0x0f0f0f0f) + ((n >>4) &0x0f0f0f0f) ; 
    n = (n &0x00ff00ff) + ((n >>8) &0x00ff00ff) ; 
    n = (n &0x0000ffff) + ((n >>16) &0x0000ffff) ; 

    return n ; 
}

速度不一定最快,但是想法绝对巧妙。 说一下其中奥妙,其实很简单,先将n写成二进制形式,然后相邻位相加,重复这个过程,直到只剩下一位。

以217(11011001)为例,有图有真相,下面的图足以说明一切了。217的二进制表示中有5个1

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值