字典树原理:
字典数将相同前缀的单词做为共用的前缀,如果找不到这个前缀,则在另外一个结点上插入这个单词。并且在这个单词结尾的结点加上1。
class Trie
{
private:
bool isEnd;
Trie *next[26];
public:
Trie()
{
isEnd=false;
memset(next,0,sizeof(next));
}
void Insert(string word)
{
Trie* node=this;
for(char ch:word)
{
if(node->next[ch-'a']==NULL)
{
node->next[ch-'a']=new Trie();
}
node=node->next[ch-'a'];
}
node->isEnd=true;
}
bool Search(string word)
{
Trie* node=this;
for(char ch:word)
{
node=node->next[ch-'a'];
if(node==NULL)
{
return false;
}
}
return node->isEnd;
}
bool StartsWith(string prefix)
{
Trie* node=this;
for(char ch:prefix)
{
node=node->next[ch-'a'];
if(node==NULL)
{
return false;
}
}
return true;
}
};
总结
通过以上介绍和代码实现我们可以总结出 Trie 的几点性质:
Trie 的形状和单词的插入或删除顺序无关,也就是说对于任意给定的一组单词,Trie 的形状都是唯一的。
查找或插入一个长度为 L 的单词,访问 next 数组的次数最多为 L+1,和 Trie 中包含多少个单词无关。
Trie 的每个结点中都保留着一个字母表,这是很耗费空间的。如果 Trie 的高度为 n,字母表的大小为 m,最坏的情况是 Trie 中还不存在前缀相同的单词,那空间复杂度就为 O(m^n)O(m
n
)。
最后,关于 Trie 的应用场景,希望你能记住 8 个字:一次建树,多次查询。(慢慢领悟叭~~)