C++图解前缀树(字典树)

字典树原理:

字典数将相同前缀的单词做为共用的前缀,如果找不到这个前缀,则在另外一个结点上插入这个单词。并且在这个单词结尾的结点加上1。

在这里插入图片描述

class Trie
{
private:
    bool isEnd;
    Trie *next[26];

public:
    Trie()
    {
        isEnd=false;
        memset(next,0,sizeof(next));
    }
    void Insert(string word)
    {
        Trie* node=this;
        for(char ch:word)
        {
            if(node->next[ch-'a']==NULL)
            {
                node->next[ch-'a']=new Trie();
            }
            node=node->next[ch-'a'];
        }
        node->isEnd=true;
    }

    bool Search(string word)
    {
        Trie* node=this;
        for(char ch:word)
        {
            node=node->next[ch-'a'];
            if(node==NULL)
            {
                return false;
            }
        }
        return node->isEnd;
    }

    bool StartsWith(string prefix)
    {
        Trie* node=this;
        for(char ch:prefix)
        {
            node=node->next[ch-'a'];
            if(node==NULL)
            {
                return false;
            }
        }
        return true;
    }
};

总结
通过以上介绍和代码实现我们可以总结出 Trie 的几点性质:

Trie 的形状和单词的插入或删除顺序无关,也就是说对于任意给定的一组单词,Trie 的形状都是唯一的。

查找或插入一个长度为 L 的单词,访问 next 数组的次数最多为 L+1,和 Trie 中包含多少个单词无关。

Trie 的每个结点中都保留着一个字母表,这是很耗费空间的。如果 Trie 的高度为 n,字母表的大小为 m,最坏的情况是 Trie 中还不存在前缀相同的单词,那空间复杂度就为 O(m^n)O(m 
n
 )。

最后,关于 Trie 的应用场景,希望你能记住 8 个字:一次建树,多次查询。(慢慢领悟叭~~)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值