递推均值滤波的实现

本文探讨了在使用Heimann HTPA 32x32红外热成像传感器时遇到的数据抖动问题,该问题是由于周期性噪声干扰引起的。原有的递推均值滤波未能有效解决这个问题,因此提出了采用递推中值滤波的方案。递推中值滤波通过缓存数据、排序、排除最大最小值并计算均值来减少干扰,以提高测量的稳定性。
摘要由CSDN通过智能技术生成

在使用Heimann HTPA 32x32红外热成像传感器时,在测量温度时出现数据在一定范围内反复抖动的结果,经测量以及实验,引导抖动产生的原因大致为周期性噪声干扰所致,在原画幅中使用的递推均值滤波在实际使用过程中仍然存在数据往返横条抖动问题,顾尝试使用递推中值滤波进行实验

 

递推中值滤波的原理大致如下:

1、使用窗口对数据进行缓存

2、对数据内的窗口进行排序

3、排除掉数据窗口内的最大最小数据,尽可能排除干扰

4、对剩余窗口内的数据加和求均值,输出

/***
	using MeanFilter & medianFilter together to let the rawdata become more stable
***/
void median_mean_Filter(signed short s_temperature,signed short *c_temperature,int level)
{// single point
	static int median_smooth_window[256];
	int temp_window[256];
	int i = 0, j = 0;
	int sum = 0;
	int temp = 0;
	for(i =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值