BZOJ5093:图的价值 (数论+NTT)

题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=5093


题目分析:这是一道很喵的题,让我学会了第二类stirling数的一种新姿势。还记得我一月初去HN集训的时候老师讲过这题,不过那个时候我对这方面还不太熟悉,今天CSHwang提醒我我才把这坑填了。

首先单独考虑每个点对最终答案的贡献。假设某个点的度数为d,那么它向其它n-1个点的连边情况就有 Cdn1 C n − 1 d 种,而其它n-1个点之间的连边情况有 2C2n1 2 C n − 1 2 种,所以它对答案的贡献为 dkCdn12C2n1 d k ∗ C n − 1 d ∗ 2 C n − 1 2 。又因为所有点都是等价的,所以答案等于:

n2C2n1d=0n1Cdn1dk n ∗ 2 C n − 1 2 ∗ ∑ d = 0 n − 1 C n − 1 d ∗ d k

这样我们就很轻易地将答案的柿子画了出来。但这题中n比较大,不能枚举,于是我们尝试着化一下后面那个sigma。然后要用到一个将幂转化为第二类stirling数的公式:

dk=p=0dCpdS(k,p)(p!) d k = ∑ p = 0 d C d p ∗ S ( k , p ) ∗ ( p ! )

为什么呢?根据我之前集训时的笔记,我们可以建立一个模型:将k个不同的小球任意放进d个不同的盒子里,方案数为 dk d k 。考虑到最后可能只有一部分盒子有小球,我们不妨一开始就指定某p个盒子一定要放小球,其余盒子一定不能放,然后将k个小球划分为p个非空集合的方案数便为 S(k,p) S ( k , p ) 。由于在第二类stirling数中,集合被认为是一样的,所以最后还要乘上一个(p!)。

那么到现在,我们就把原先那个sigma后面的东西变成了下面的式子:

d=0n1Cdn1p=0dCpdS(k,p)(p!) ∑ d = 0 n − 1 C n − 1 d ∑ p = 0 d C d p ∗ S ( k , p ) ∗ ( p ! )

然后观察一下这个: n1d=0Cdn1dp=0Cpd ∑ d = 0 n − 1 C n − 1 d ∑ p = 0 d C d p ,它相当于先在n-1个数中选了d个数,然后在d个数中再选p个数。如果我们把p看作定值,那么可以先在n-1个数中选p个,然后剩下的n-1-p个数可选可不选。剩下n-1-p个数怎么选,都唯一地对应着一开始 Cdn1 C n − 1 d 的一种方案。所以我们将它化为 n1p=0Cpn12n1p ∑ p = 0 n − 1 C n − 1 p ∗ 2 n − 1 − p

于是原式变为:

p=0n1Cpn12n1p(p!)S(k,p) ∑ p = 0 n − 1 C n − 1 p ∗ 2 n − 1 − p ∗ ( p ! ) ∗ S ( k , p )

然而p的上界还是n-1啊,无法枚举。但我们惊人地发现,当 p>k p > k 时, S(k,p)=0 S ( k , p ) = 0 ,所以p的上界可以和k取min!这样只要能快速地求出所有 S(k,x)(0<=x<=k) S ( k , x ) ( 0 <= x <= k ) ,就可以直接枚举p求得答案了!

最后,根据BZOJ4555这题里推导的关于 S(k,p) S ( k , p ) 的容斥公式,我们可以很轻松地将它变为卷积的形式:

S(k,p)=1p!q=0p(1)qCqp(pq)k=q=0p(1)qq!(pq)k(pq)! S ( k , p ) = 1 p ! ∑ q = 0 p ( − 1 ) q ∗ C p q ∗ ( p − q ) k = ∑ q = 0 p ( − 1 ) q q ! ∗ ( p − q ) k ( p − q ) !

扔给NTT预处理就行辣。喵~

总结一下:这题有三个很巧喵的地方。第一个是将 dk d k 化为一个关于第二类stirling数的式子;第二个是将两层sigma的关于组合数的枚举化为一层;第三个则是利用 S(n,m) S ( n , m ) m>n m > n 时值为0的特点改变p的枚举上界,这也就是为何一开始要不惜麻烦将原式化为一个关于 S(k,p) S ( k , p ) 的式子。

贴code之前我说一句,考场上要是遇见这种推导题,哪个地方思路不清晰就走远了。而且一般只要能过样例,就能AC了。


CODE:

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<stdio.h>
#include<algorithm>
using namespace std;

const int maxn=1000000;
const long long M=998244353;
const long long g=3;
typedef long long LL;

LL A[maxn];
LL B[maxn];

int Rev[maxn];
int N,Lg;

LL fac[maxn];
LL nfac[maxn];

int n,k;

LL Pow(LL x,LL y)
{
    if (!y) return 1;
    LL temp=Pow(x,y>>1);
    temp=temp*temp%M;
    if (y&1) temp=temp*x%M;
    return temp;
}

void DFT(LL *a,int f)
{
    for (int i=0; i<N; i++)
        if (i<Rev[i]) swap(a[i],a[ Rev[i] ]);

    for (int len=2; len<=N; len<<=1)
    {
        int mid=(len>>1);
        LL e=Pow(g,(M-1)/len);
        if (f==-1) e=Pow(e,M-2);

        for (LL *p=a; p!=a+N; p+=len)
        {
            LL wn=1;
            for (int i=0; i<mid; i++)
            {
                LL temp=wn*p[mid+i]%M;
                p[mid+i]=(p[i]-temp+M)%M;
                p[i]=(p[i]+temp)%M;
                wn=wn*e%M;
            }
        }
    }
}

void NTT()
{
    N=1,Lg=0;
    while (N<2*k+2) N<<=1,Lg++;
    for (int i=0; i<N; i++)
        for (int j=0; j<Lg; j++)
            if (i&(1<<j)) Rev[i]|=(1<<(Lg-j-1));

    DFT(A,1);
    DFT(B,1);
    for (int i=0; i<N; i++) A[i]=A[i]*B[i]%M;
    DFT(A,-1);

    LL inv=Pow(N,M-2);
    for (int i=0; i<N; i++) A[i]=A[i]*inv%M;
}

int main()
{
    //freopen("5093.in","r",stdin);
    //freopen("5093.out","w",stdout);

    scanf("%d%d",&n,&k);

    fac[0]=1;
    for (LL i=1; i<=k; i++) fac[i]=fac[i-1]*i%M;
    for (int i=0; i<=k; i++) nfac[i]=Pow(fac[i],M-2);

    for (int i=0; i<=k; i++)
    {
        A[i]=nfac[i];
        if (i&1) A[i]=M-A[i];
        B[i]=nfac[i];
        B[i]=B[i]*Pow(i,k)%M;
    }
    NTT();

    LL ans=0,val=1;
    for (int i=0; i<=min(n-1,k); i++)
    {
        A[i]=A[i]*val%M;
        A[i]=A[i]*Pow(2LL,n-1-i)%M;
        ans=(ans+A[i])%M;
        val=val*(n-1-i)%M;
    }
    ans=ans*(LL)n%M*Pow(2LL, (LL)(n-2)*(LL)(n-1)/2LL )%M;
    printf("%lld\n",ans);

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值