《DD-PPO: LEARNING NEAR-PERFECT POINTGOAL NAVIGATORS FROM 2.5 BILLION FRAMES》-----强化学习论文笔记

DD-PPO是一种解决资源密集型3D模拟环境中分布式强化学习延时问题的方法。通过去中心化和预设的抢占阈值,它在Hatitat-Sim上实现了近线性扩展,有效加速了训练过程。该算法避免了参数服务器,允许工作者在达到一定完成比例时提前结束rollout,提高效率。实验表明,DD-PPO在处理高维输入和深度神经网络时,能有效地利用GPU资源,对比其他同步和异步分布式RL方法,显示了更好的扩展性和性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


abstract

去中心化分布式PPO(DD-PPO) 是一种在资源密集型模拟环境中进行分布式强化学习的方法,在Hatitat-Sim上表现出近线性的扩展——通过串行在128个GPU上实现了107倍加速。
code
video


introduction

不同于gym和Atari, 3D simulator需要GPU加速,因此worker的数量通常有限制( 2 5 2^5 25- 2 8 2^8 28vs 2 12 2^{12} <

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值