鸟类AI识别系统属于基于人工智能技术的鸟类识别工具,主要依靠计算机视觉技术与深度学习算法达成对鸟类的识别。
基本原理
一、数据采集与预处理
于野外鸟类栖息地,通常会设置高清摄像头或者红外相机等设备以捕捉鸟类的图像与声音数据。此类数据为鸟类AI识别的根基。在获取数据之后,会对其实施预处理,如降噪、增强等操作,以方便后续的AI分析。例如,若图像数据存在噪声干扰,也许会对鸟类特征的精确提取产生影响,通过降噪处理,能够提升图像的清晰度与质量。
二、特征提取
这一流程是运用深度学习算法从经过预处理的数据里提取鸟类的特征,如体貌特征(体型大小、形状等)、声纹特征(不同鸟类叫声的特质)等。以图像识别为例,将依据鸟类的外形特征(诸如羽毛颜色、图案、喙的形状、身体比例等)、颜色、纹理等信息开展特征提取。例如啄木鸟的喙较长且尖锐,便于啄树木找虫吃,此特征可成为识别啄木鸟的重要依据。
三、模型训练与识别运用
运用大量已知的鸟类数据对AI模型加以训练,使模型学会怎样将提取出的特征与鸟类名称进行关联。当模型训练完成后,便可应用于识别新的鸟类图片或者音频了。例如在观鸟活动中,当看到一只不认识的鸟,拍下照片上传至鸟类AI识别系统,系统就能依据已训练好的模型进行分析,迅速且精准地告知这只鸟的名称、习性等信息。当前基于深度学习的CNN网络模型能够准确识别多种鸟类,像中国的部分鸟类识别AI可支持国内1400 +种鸟类品种识别,北美也存在能识别1200 +种鸟类品种的AI。部分先进的鸟类识别AI不但利用图像特征,还结合声音进行识别。在森林等有障碍物看不到鸟的地方,可将鸟鸣转换为频谱并提取其特征来识别鸟类,借助图像和声音的组合进一步提高识别准确率。并且算法模型还能够依据实时拍摄到的图像或视频流数据,自动计算出鸟类的数量,统计鸟类在不同区域(如森林、湿地、湖泊、草地等)的分布情况等。
实现不打扰鸟类的守护
一、守护意识的树立
不打扰鸟类是守护鸟类最为基本且极为重要的理念。在日常生活里,需让公众知晓人与鸟类应保持适当距离,尽可能减少人类活动对鸟类自然行为的干扰。例如,人们不可因好奇而追逐鸟类,或者为满足拍摄需求而运用不当手段引诱鸟类现身。如同许多摄影爱好者,为拍出所谓的“好照片”,可能会呼喊鸟或用食物诱导鸟做出特定动作,这些均为不当行为。“不打扰”理念应融入公众的认知当中,民众在观鸟、爱鸟时要时刻牢记这一点,意识到这是对鸟类最好的保护方式。例如,鸟类专家指出,对野生动物的投喂行为不可取,人和野生动物需保持适当距离,盲目投喂不但可能引发鸟类健康问题,若投喂过量,还会造成鸟类过度集中,超出自然界中的分布密度,增加动物疫情传播的风险,并且会致使野生动物对人类环境产生依赖,降低对人类的警惕性,容易被捕捉。
二、科学合适的观察方式
公众在观鸟时应采用科学的方式。首先在衣着方面,避免穿着颜色鲜艳的衣服,可以进行适当伪装,防止因颜色鲜艳的衣服吓跑鸟类。例如,野鸟视力良好且机警,若观鸟者穿着大红大紫等颜色鲜艳的衣服,容易被鸟群的“哨兵”发觉并向同伴发出信号,而后鸟群可能就会远离人类。其次,在观察工具的使用上,应当选用合适的设备如望远镜,从远处观赏鸟类,保持安静,减少噪音产生。在鸟类繁殖期间,如看到鸟类筑巢、育雏等场景,要尽快离开,以免鸟类受到惊扰弃巢而去。
三、维护鸟类的生存环境
人类不仅要做到不直接干扰鸟类,还需维护好鸟类的生存环境。例如在湿地、森林这些鸟类栖息地,不应随意采摘果实、拣拾底栖生物等鸟类赖以生存的环境资源,维护好人工鸟巢、鸟类投食器等鸟类保护设施。避免因人类的开发活动破坏鸟类栖息地的完整性,像不应为建设城市或工业设施过度占用湿地等鸟类栖息地,从而为鸟类提供一个稳定的生存家园。同时,在对鸟类进行监测时,通过AI技术远程、隐蔽地进行监测,减少人类在鸟类栖息地的频繁出现。例如在嘉兴嘉善的祥符荡区域,采用人工智能(AI)+大数据分析的智慧化动态监测系统来监测鸟类,通过硬件布局(在南北祥符荡部署视频监测点位)采集数据,减少人类实地踏足对鸟类的影响,同时能够精准识别出现在该区域的鸟类。
成功案例
一、南大港湿地的AI保护项目
南大港湿地作为重要的候鸟栖息地,面临着气候变化与人类活动的干扰。一家科技公司引入人工智能技术,通过AI监控系统守护这片湿地。该系统运用机器学习算法实时分析湿地生物的活动情况,结合高清摄像头、无人机巡逻以及复杂的数据分析工具,能够及时捕捉候鸟的栖息、觅食等行为数据。并且AI系统能够准确识别多种鸟类的特征,还可预测它们的活动规律,为生态保护提供精准的数据支持。这个项目不但保护了南大港湿地的鸟类栖息地,也为全球的生态监测提供新的可能,引发市场的热烈反响,受到环保组织、科研机构关注,也得到广大鸟类观察爱好者的期待。
二、嘉善的AI识鸟技术助力生物多样性保护
嘉善是中国东部候鸟迁徙的重要中转站,依据该地的地理情况采用人工智能(AI)+大数据分析的智慧化动态监测系统。系统采用在重点区域部署视频监测点位来采集数据,进行计算分析以识别候鸟种类。自系统试运行以来,已经自动监测到祥符荡区域的多种鸟类,如红头潜鸭、凤头潜鸭、白骨顶、黑天鹅、黑水鸡、棕背伯劳、鹤鹬等。这种软硬结合的方式识别精准度高,并且极大地提高了监测效率,与传统的人工调查(人工 +观测设备静态观测法)形成互补,其不需要过多的人工干预,减少对鸟类的惊扰,有利于保护鸟类生存状态。
三、中国推广鸟类识别AI
在中国全国大力推广鸟类识别AI的应用,取得多方面成果。这种技术能够确定鸟类种类和数量,减少之前依靠肉眼观察和经验判断候鸟抵达情况时的错误。该技术不但可以通过分析鸟类的照片识别鸟类,还能识别鸟叫声,通过将鸟鸣声转换为频谱并提取其特征来提高识别精度。例如在中国的昆明等城市通过鸟类识别AI可以有效统计候鸟数量。并且鸟类识别AI可以多方式部署(如在公园或湖泊周边设立小型服务器,进行本地化的AI处理后再将数据上传至云端;或者直接将所有数据处理放到云端进行),大大提升全天候监测效率的同时减少人工成本,也让鸟类在监测区域内能够更自然地停留,进而实现对鸟类的有效监测和保护,并且还能够应用于预防鸟类携带的流行病和传染病,目前已经能够识别800多种鸟类,在鸟类保护工作中发挥积极作用。