AI相关综述
文章平均质量分 93
记录读AI相关的论文时,对AI的一些理解和总结
皮皮宽
某家芯片公司的打工仔
展开
-
RNN和LSTM的反向传播公式推导
RNN和LSTM的反向传播公式推导这篇博客主要推导RNN和LSTM的反向传播公式,以便更好的理解RNN和LSTM的运算文章目录RNN和LSTM的反向传播公式推导一. RNN1. RNN正向传播2. RNN梯度计算二. LSTM1. LSTM正向传播2. LSTM反向传播总结一. RNN1. RNN正向传播h~t=Wxt+Uht−1+b\widetilde h_{t}=Wx_{t}+Uh_{t-1}+bht=Wxt+Uht−1+bht=tanh(h~t)h_{t}= \tanh(\wi原创 2021-06-07 13:25:35 · 818 阅读 · 0 评论 -
文献综述:基于FPGA的RNN硬件加速
文献综述:基于FPGA的RNN硬件加速这篇博客是基于一些文献对RNN硬件加速的各个模块的总结文章目录文献综述:基于FPGA的RNN硬件加速一. 剪枝1. 稀疏剪枝2. Top-k剪枝3. Circulant矩阵4. 三种剪枝方式的对比二. 量化1. 线性量化2. 非线性量化(对数量化)3. 两种量化方式的对比三. 激活函数1. 查找表的方式(LUT)2. 分段线性函数替代非线性函数参考文献一. 剪枝LSTM虽然解决了梯度消失的问题,但由于引入了很多门控单元,导致参数量很大。然而由于神经网络的鲁原创 2021-05-10 17:02:37 · 1929 阅读 · 4 评论 -
从MLP,DNN到LSTM
LSTM学习序列信息的原理这篇博客从简单的多层感知机(MLP)讲起,讲述了RNN网络如何发展到现在的LSTM结构,以便充分了解LSTM中各个门控单元的作用以及LSTM为何能学习到序列信息文章目录LSTM学习序列信息的原理一、感知机(Perceptron)1.矩阵向量乘法运算(MVMs)2.添加偏置(bias)3. 激活函数二、多层感知机(MLP,Multilayer Perceptron)三、RNN(Recurrence Neural Network)四、LSTM1. LSTM without a原创 2021-05-05 18:57:18 · 3080 阅读 · 0 评论