MapReduce 开篇练习之 统计单词

这篇博客介绍了MapReduce的入门实践,通过一个简单的单词统计任务,详细讲解了Mapper、Reducer和Driver三个关键组件的工作原理和实现过程,旨在帮助初学者理解Hadoop MapReduce的编程模型。
摘要由CSDN通过智能技术生成

Mapper

/***
 * hadoop 分布式运算的编程框架
 * wordCount使用
 * 
 * KEYIN : 默认情况下,是mr框架所读到的一行文本内容的起始偏移量,Long
 *  但是在hadoop中有自己的更精简的序列化接口,所以不直接用Long,而用LongWritable
 * VALUEIN : 默认情况下,是mr框架所读到的一行文本的内容,String.同上用Text
 *
 * KEYOUT : 用户自定义逻辑处理完成之后输出数据中的key,在此处是单词,String.同上用Text
 * VALUEOUT : 用户自定义逻辑处理完成之后输出数据中的value,再次是单词次数:Integer. 同上用IntWritable
 */
public class WordcountMapper extends Mapper<LongWritable,Text,Text,IntWritable>{
   


    /***
     * map阶段的业务逻辑就写在自定义的map方法中
     * maptask会对每一行输入数据调用一次我们自定义的map()方法
     *
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值