模二除法详解

模二除法(Modulo-2 Division)是一种特殊的除法运算,用于计算二进制数据的CRC校验码。这种运算与普通的除法类似,但区别在于它使用 不进位的异或运算 来代替普通除法中的减法操作。模二除法的结果为二进制余数,应用在校验过程中以检验数据完整性。

模二除法的基本规则

  • 模二除法的每一步相当于使用 异或(XOR) 运算替代减法。
  • 模二除法中,不需要进位,只需要逐位比较和异或操作。

举例说明模二除法

假设我们有一组二进制数据 110101,要对它进行CRC校验,使用生成多项式 1011。这里,我们演示模二除法的具体步骤。

  1. 准备原始数据和生成多项式

    • 原始数据110101
    • 生成多项式1011(长度为4位)
  2. 数据扩展:为了计算CRC校验码,需要在数据末尾添加3位0(因为生成多项式是4位,CRC校验码的长度为生成多项式位数减1)。

    • 扩展后的数据:110101000
  3. 模二除法操作

    • 将生成多项式 1011 对扩展后的数据 110101000 进行“除法”(使用异或操作),具体过程如下:

    步骤 1

    • 当前被除数:1101(取扩展后的前4位)
    • 生成多项式:1011
    • 异或结果:0110

    步骤 2

    • 将结果 0110 的下一位(扩展数据中的下一位 0)放下,形成新的被除数:1100
    • 异或 1011:结果为 0111

    步骤 3

    • 将结果 0111 的下一位 1 放下,形成新的被除数:1111
    • 异或 1011:结果为 0100

    步骤 4

    • 将结果 0011 的下一位 0 放下,形成新的被除数:1000
    • 异或 1011:结果为 0011

    步骤 5

    • 将结果 0011 的下两位 0 放下,形成新的被除数:1100
    • 异或 1011:结果为 0111
原数据扩展
扩展数据110101000
多项式1011
第一次结果01100
多项式1011
第二次结果01111
多项式1011
第三次结果01000
多项式1011
第四次结果001100
多项式1011
第五次结果0111
  1. 最终余数为 0101,即为 CRC 校验码

  2. 验证数据完整性:接收方可以使用相同的生成多项式再次进行模二除法。如果运算结果余数为 0,则表示数据没有错误;如果不为零,则表明数据有误。

    def xor_division(dividend, divisor):
        """ Perform modulo-2 division (XOR division) and return the remainder. """
        # Convert divisor and dividend to lists of integers for easy manipulation
        dividend = list(map(int, dividend))
        divisor = list(map(int, divisor))
        divisor_len = len(divisor)
        
        # Perform XOR division
        for i in range(len(dividend) - len(divisor) + 1):
            # Only apply XOR if the current bit is 1
            if dividend[i] == 1:
                for j in range(divisor_len):
                    dividend[i + j] ^= divisor[j]  # XOR operation
    
        # The remainder is the last bits of the modified dividend
        remainder = ''.join(map(str, dividend[-(divisor_len - 1):]))
        return remainder
    
    def calculate_crc(data, generator):
        """ Append CRC remainder to data and return the data with CRC code. """
        # Append zeros to the data based on the length of the generator polynomial
        data_padded = data + '0' * (len(generator) - 1)
        remainder = xor_division(data_padded, generator)
        return data + remainder  # Original data + CRC code
    
    # Example usage
    data = '110101'         # Original data
    generator = '1011'      # CRC generator polynomial
    
    # Calculate CRC and append it to the data
    data_with_crc = calculate_crc(data, generator)
    print(f"Original Data: {data}")
    print(f"Generator Polynomial: {generator}")
    print(f"Data with CRC code: {data_with_crc}")
    

总结

  • 模二除法的本质是对二进制数据逐位异或运算。
  • CRC 中,这种运算用于生成和验证校验码,以检测传输过程中的数据错误。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值