ACM常用模板——数论

(一)全排列

设一组数p = {r1, r2, r3, … ,rn}, 全排列为perm(p),pn = p – {rn}。则perm(p) = r1perm(p1), r2perm(p2), r3perm(p3), … , rnperm(pn)。当n = 1时perm(p} = r1。

如:求{1, 2, 3, 4, 5}的全排列

1、首先看最后两个数4, 5。 它们的全排列为4 5和5 4, 即以4开头的5的全排列和以5开头的4的全排列。

由于一个数的全排列就是其本身,从而得到以上结果。

2、再看后三个数3, 4, 5。它们的全排列为3 4 5、3 5 4、 4 3 5、 4 5 3、 5 3 4、 5 4 3 六组数。

即以3开头的和4,5的全排列的组合、以4开头的和3,5的全排列的组合和以5开头的和3,4的全排列的组合.

#include <stdio.h>
int n = 0;
void swap(int *a, int *b)
{
int m;
m = *a;
*a = *b;
*b = m;
}
void perm(int list[], int k, int m)
{
int i;
if(k > m)
{
for(i = 0; i <= m; i++)
printf("%d ", list[i]);
printf("\n");
n++;
}
else
{
for(i = k; i <= m; i++)
{
swap(&list[k], &list[i]);
perm(list, k + 1, m);
swap(&list[k], &list[i]);
}
}
}
int main()
{
int list[] = {1, 2, 3, 4, 5};
perm(list, 0, 4);
printf("total:%d\n", n);
return 0;
}

(二)求组合数
#include <iostream>
#include <cstring>
#define mod 1000000007
using namespace std;
int c[1005][1005];
void init(long long n,long long m)
{
long long i,j;
memset(c,0,sizeof(c));
for(i=0;i<=m;i++)
c[0][i]=c[1][i]=1;
for(i=0;i<=m;i++)
c[i][i]=1;
for(i=0;i<=n;i++)
c[i][0]=1;
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(i!=j)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
}
}
int main()
{
int n,m;
init(1000,1000);
while(cin>>n>>m){
cout<<c[n][m]<<endl;
}
}


 
阅读更多
文章标签: acm 算法 数据结构
个人分类: acm
想对作者说点什么? 我来说一句

ACM常用模板总结ACM常用模板总结

2010年07月18日 119KB 下载

ACM 算法 常用模板

2010年07月28日 605KB 下载

ACM常用模板 ACM常用模板

2010年07月04日 79KB 下载

ACM资料(数论,博弈……)

2010年08月02日 7.76MB 下载

没有更多推荐了,返回首页

不良信息举报

ACM常用模板——数论

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭