车牌识别应用搭建(含模型和源码)

车牌识别应用搭建

内容说明

本示例旨在展示如何在 DeepStream SDK 版本不低于 5.0.1 的情况下使用分级模型进行检测和分类。 本例中的模型均为TAO3.0模型。

PGIE(car detection) -> SGIE(car license plate detection) -> SGIE(car license plate recognization)

在这里插入图片描述

该流程基于以下三个 TAO 模型:

  • 车辆检测模型: https://ngc.nvidia.com/catalog/models/nvidia:tao:trafficcamnet
  • 车牌检测模型(lpd): https://ngc.nvidia.com/catalog/models/nvidia:tao:lpdnet
  • 车牌识别模型(lpr): https://ngc.nvidia.com/catalog/models/nvidia:tao:lprnet

TAO 3.0 LPD和LPR模型以及TAO训练的更多细节,请参考TAO文档

性能

下表显示了使用此示例应用程序处理 1080p 视频的端到端性能。

DeviceNumber of streamsBatch SizeTotal FPS
Jetson Nano119.2
Jetson NX3380.31
Jetson Xavier55146.43
Jetson Orin55341.65
T41414447.15

预安装

  • DeepStream SDK 6.0 or above

  • tao-converter

    https://catalog.ngc.nvidia.com/orgs/nvidia/teams/tao/resources/tao-converter/version.

  • Triton Inference Server

    The LPR sample application can work as Triton client on x86 platforms.

下载

  1. 从Github下载源码:
    // SSH
    git clone git@github.com:NVIDIA-AI-IOT/deepstream_lpr_app.git
    // or HTTPS
    git clone https://github.com/NVIDIA-AI-IOT/deepstream_lpr_app.git
  1. 准备模型:
 cd deepstream_lpr_app/
 #美国车牌模型
 ./download_convert.sh us 0  #if DeepStream SDK 5.0.1, use ./download_convert.sh us 1
 #中国车牌模型
 ./download_convert.sh ch 0  #if DeepStream SDK 5.0.1, use ./download_convert.sh ch 1

编译运行

make
cd deepstream-lpr-app
cp dict_us.txt dict.txt #美国车牌
cp dict_ch.txt dict.txt #中国车牌

开始运行:

./deepstream-lpr-app <1:US car plate model|2: Chinese car plate model> \
         <1: output as h264 file| 2:fakesink 3:display output> <0:ROI disable|1:ROI enable> <infer|triton|tritongrpc> \
         <input mp4 file name> ... <input mp4 file name> <output file name>

./deepstream-lpr-app 1 1 0 infer us_car_test_video.mp4 out.mp4

在这里插入图片描述

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扫地的小何尚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值