机缘
我呢, 是做高性能计算和人工智能开发的一个程序员.最开始呢, 就是想记录下工作中的内容.
后来我就想把工作中用到的开发者手册和指南整理翻译, 希望帮到更多的中国的开发者能更快更好的了解最新的AI技术.
收获
在这两年里, 不知不觉间一共完成了400多篇博客, 其实也不知道哪里来的动力, 我想这慢慢的成为了自己的一种习惯.
日常
我的工作呢, 是我司的开发者社区, 目的就是帮助中国的开发者更好地了解GPU和更好的利用GPU开发.
所以创作就是在生活, 也是在工作, 我很享受这一过程
成就
我觉得最好的代码是最简洁的方式完成任务, 仅仅通过几行代码就能部署AI流程:
# Load the SDXL-1.0 base model from HuggingFace
import torch
from diffusers import DiffusionPipeline
base = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
base.to("cuda")
# Load calibration prompts:
from utils import load_calib_prompts
cali_prompts = load_calib_prompts(batch_size=2,prompts="./calib_prompts.txt")
# Create the int8 quantization recipe
from utils import get_percentilequant_config
quant_config = get_percentilequant_config(base.unet, quant_level=3.0, percentile=1.0, alpha=0.8)
# Apply the quantization recipe and run calibration
import ammo.torch.quantization as atq
quantized_model = atq.quantize(base.unet, quant_config, forward_loop)
# Save the quantized model
import ammo.torch.opt as ato
ato.save(quantized_model, 'base.unet.int8.pt')
憧憬
希望继续坚持下去, 希望看到我的博客能帮助更多的朋友
Tips